Skip to main content

The Stratigraphy and Structure of the Western Saldania Belt, South Africa and Geodynamic Implications

  • Chapter
  • First Online:
Geology of Southwest Gondwana

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

The western Saldania belt in South Africa exposes a section through a fore-arc region that records deformation, sedimentation and plutonism in the late Neoproterozoic and Cambrian (>560 to <510 Ma) along the obliquely convergent continental margin of the Kalahari Craton. The belt comprises two main and structurally overlying units. Imbricated and pervasively transposed marine metasediments and relics of oceanic crust constitute the structurally lower Swartland complex. Kinematics and strains indicate formation of the accretionary complex during tectonic underplating and top-to-the west and northwest thrusting related to the southeast-directed subduction of the Adamastor ocean below the Kalahari Craton. The Swartland complex is unconformably overlain by low-grade metamorphic metasediments and minor metavolcanic rocks of the Malmesbury group that represent the late-Neoproterozoic to Cambrian fore-arc basin fill. Sedimentary facies suggest the presence of a volcanic arc in the east, succeeded in the west by metaturbidites of the inner fore-arc basin and deeper-water metapelitic successions in the northwest interpreted to form slope-apron deposits overlying the toe of the prim and facing the ocean basin. The regional deformation of the fore arc is characterized by partitioned sinistral transpression related to oblique convergence. The absence of collisional structures and very limited exhumation of the rocks suggest a soft collisional event, probably as a result of slab break-off. This break-off may also account for the voluminous, syn- to late-tectonic plutonism of the Cape Granite Suite in the fore-arc region, peaking around 540–530 Ma and accompanying the waning stages of regional tectonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong R, de Wit MJ, Reid D, York D, Zartman R (1998) Cape Town’s table mountain reveals rapid Pan-African uplift of its basement rocks. J Afr Earth Sci 27(1A):10

    Google Scholar 

  • Basei MAS, Frimmel HE, Nutman AP, Preciozzi F, Jacob J (2005) A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts—evidence from a reconnaissance provenance study. Precambr Res 139:195–221

    Article  Google Scholar 

  • Belcher RW (2003) Tectonostratigraphic evolution of the Swartland region and aspects of orogenic lode-gold mineralisation in the Pan-African Saldania Belt, Western Cape, South Africa. Ph.D thesis (unpubl.), University of Stellenbosch, 244 p

    Google Scholar 

  • Belcher RW, Kisters AFM (2003) Lithostratigraphic correlations in the western branch of the Pan-African Saldania Belt, South Africa: the Malmesbury Group revisited. S Afr J Geol 106:327–342

    Article  Google Scholar 

  • Buggisch W, Kleinschmidt G, Krumm S (2010) Sedimentology, geochemistry and tectonic setting of the Neoproterozoic Malmesbury Group (Tygerberg Terrane) and its relation to neighbouring terranes, Saldania Fold Belt, South Africa. Neues Jahrbuch fur Geologie und Palaontologie 257:85–114

    Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2012) Detrital zircon record and tectonic setting. Geology 40(10):875–878

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chemale F, Scheepers R, Gresse PG, Schmus WRV (2011) Geochronology and sources of late Neoproterozoic to Cambrian granites of the Saldania Belt. Int J Earth Sci 100:431–444

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Sci Rev 61:1–18

    Article  Google Scholar 

  • Clemens JD, Belcher RW, Kisters AFM (2010) The Heerenveen batholith, Barberton Mountain Land, South Africa: Mesoarchaean felsic magmas formed by melting of an ancient subduction complex. J Petrol. https://doi.org/10.1093/petrology/egq014

  • Clemens JD, Helps PA, Stevens G (2009) Chemical structure in granitic magmas—a signal from the source? Proc R Soc Edinb 100:1–14

    Google Scholar 

  • Clemens JD, Buick IS, Kisters AFM (2017) The Donkerhuk batholith, Namibia: a giant S-type granite emplaced in the mid crust, in a fore-arc setting. J Geol Soc London 174:157–169

    Article  Google Scholar 

  • Da Silva LC, Gresse PG, Scheepers R, McNaughton NJ, Hartmann LA, Fletcher I (2000) U-Pb and Sm-Nd age constraints on the timing and sources of the Pan-African Cape Granite Suite, South Africa. J Afr Earth Sci 30:795–815

    Article  Google Scholar 

  • De Villiers J, Jansen H, Mulder MP (1964) The geology of the area between Worcester and Hermanus. Explanations sheets 3319C Worcester and 3419A Caledon and parts of the sheets 3318D Stellenbosch and 3418B Somerset West. Geological Survey of South Africa, South Africa, p 69

    Google Scholar 

  • Farina F, Stevens G, Villaros A (2012) Multi-batch incremental assembly of a dynamic magma chamber: the case of the Peninsula Pluton granite (Cape Granite Suite, South Africa). Mineral Petrol. https://doi.org/10.1007/s00710-012-0224-8

  • Fisher D, Byrne T (1987) Structural evolution of underthrusted sediments, Kodiak Islands, Alaska. Tectonics 6:775–793

    Article  Google Scholar 

  • Fölling PG, Zartmann RE, Frimmel HE (2002) A novel approach to double-spike Pb-Pb dating of carbonate rocks: examples from Neoproterozoic sequences in southern Africa. Chem Geol 171:97–122

    Article  Google Scholar 

  • Fossen H, Tikoff B (1998) Extended models of transpression and transtension, and applications to tectonic settings. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics, vol 135. Geological Society of London Special Publication, pp 15–33

    Google Scholar 

  • Frimmel HE (2009) Configuration of Pan-African orogenic belts in southwestern Africa. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana, vol 16. Developments in Precambrian geology, Elsevier, pp 145–151

    Google Scholar 

  • Frimmel HE, Frank W (1998) Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa. Precambr Res 90:1–28

    Article  Google Scholar 

  • Frimmel HE, Basei MAS, Gaucher C (2011) Neoproterozoic geodynamic evolution of SW Gondwana: a southern African perspective. Int J Earth Sci 100:323–354

    Article  Google Scholar 

  • Frimmel HE, Basei MAS, Correa VX, Mbangula N (2013) A new lithostratigraphic subdivision and geodynamic model for the western Pan-African Saldania Belt, South Africa. Precambr Res 231:218–235

    Article  Google Scholar 

  • Gaucher C, Frimmel HE, Germs GJB (2009) Tectonic events and paleogeographic evolution of southwestern Gondwana in the Neoproterozoic and Cambrian. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana, vol 16. Developments in Precambrian Geology, Elsevier, pp 295–316

    Google Scholar 

  • Goscombe BD, Gray DR (2008) Structure and strain variation at mid-crustal levels in a transpressional orogen: a review of the Kaoko Belt structure and the character of West Gondwana amalgamation and dispersal. Gondwana Res 13:45–85

    Article  Google Scholar 

  • Goscombe BD, Hand M, Gray D (2003) Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen. J Struct Geol 25:1049–1081

    Article  Google Scholar 

  • Gresse PG (1994) Strain partitioning in the southern Gariep arc as reflected by sheath folds and stretching lineations. S Afr J Geol 97:52–61

    Google Scholar 

  • Gresse PG (1995) Transpression and transection in the late Pan-African Vanrhynsdorp foreland thrust-fold belt, South Africa. J Afr Earth Sci 21:91–105

    Article  Google Scholar 

  • Gresse PG, Theron JN (1992) The geology of the Worcester area. Explanation sheet 3319 Worcester (1:250.000), Geological Survey of South Africa, 79 p

    Google Scholar 

  • Gresse PG, Von Veh MW, Frimmel HE (2006) Namibian (neoproterozoic) to early Cambrian successions. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, pp 395–420

    Google Scholar 

  • Hartnady CJH (1969) Structural analysis of some pre-Cape formations in the Western Province, vol 6. Bulletin Precambrian Research Unit, University of Cape Town

    Google Scholar 

  • Hartnady CJH, Newton AR, Theron JN (1974) The stratigraphy and structure of the Malmesbury Group in the southwestern Cape, vol 15. Bulletin Precambrian Research Unit, University Cape Town, pp 193–213

    Google Scholar 

  • Hartnady CJ, Joubert P, Stowe CW (1985) Proterozoic crustal evolution of southwestern Africa. Episodes 8:236–244

    Google Scholar 

  • Harris CJ, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. South African J Geol 401–412

    Google Scholar 

  • Heller PL, Ryberg PT (1983) Sedimentary record of subduction to fore-arc transition in the rotated Eocene basin of western Oregon. Geology 11(7):380–383

    Article  Google Scholar 

  • Kisters AFM, Belcher RW, Armstrong RA, Scheepers R, Rozendaal A, Jordaan LS (2002) Timing and kinematics of the Colenso Fault; the Early-Paleozoic shift from collisional to extensional tectonic in the Pan-African Saldania Belt, South Africa. S Afr J Geol 105:257–270

    Article  Google Scholar 

  • Kisters AFM, Agenbach C, Frei D (2015) Age and tectonic significance of the volcanic Bloubergstrand member in the Pan-African Saldania Belt, South Africa. S Afr J Geol 118:213–224

    Article  Google Scholar 

  • Konopasek J, Kröner S, Kitt SL, Passchier CW, Kröner A (2005) Oblique collision and evolution of large-scale transcurrent shear zones in the Kaoko belt, SW Namibia. Precambr Res 136:139–157

    Article  Google Scholar 

  • Malavieille J (2010) Impact of erosion, sedimentation and structural heritage on the structure and kinematics of orogenic wedges: analog models and case studies. GSA Today 20:4–10

    Article  Google Scholar 

  • McGibbon D (2012) Structural inventory and style of the Tygerberg formation along coastal outcrops near Grotto Bay, West Coast, South Africa: Implications for the tectonic evolution of the Pan-African Saldania Belt. BSc Honours thesis (unpubl.), University of Stellenbosch, 67 p

    Google Scholar 

  • Meneghini F, Kisters AFM, Buick IS, Fagereng A (2014) Fingerprints of Late-Neoproterozoic ridge subduction in the Pan-African Damara Belt, Namibia. Geology 42:903–906

    Article  Google Scholar 

  • Miller RM (2008) Neoproterozoic and early Palaeozoic rocks of the Damara Orogen. In: Miller RM (ed) The geology of Namibia, vol 2. Geological Survey of Namibia, Windhoek

    Google Scholar 

  • Miller RM, Frimmel HE, Will TM (2009) Geodynamic synthesis of the Damara Orogen sensu lato. Neoproterozoic to early Palaeozoic evolution of Southwestern Africa. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on Southwestern Gondwana, vol 16. Developments in Precambrian Geology, Elsevier, Amsterdam, pp 231–235

    Google Scholar 

  • Newton AR (1966) Preliminary report on work on Malmesbury Rocks. In: 4th annual report, Precambrian Res. Unit, University of Cape Town, pp 16–17

    Google Scholar 

  • Noda, A. (2016) Fore arc basins: Types, geometries and relationships to subduction zone dynamics. Geological Society of America Bulletin. https://doi.org/10.1130/B31345.1

  • Oriolo S, Oyhantcabal P, Basei MAS, Wemmer K, Siegesmund S (2016) The Nico Perez Terrane (Uruguay): from Archaean crustal growth and connections with the Congo Craton to Late neoproterozoic accretion to the Rio de la Plata Craton. Precambr Res 280:147–160

    Article  Google Scholar 

  • Rabie LP (1948) Geological Map of the Morreesburg-Wellington area. University of Stellenbosch

    Google Scholar 

  • Rabie IP (1974) Geological map of the Morreessburg-Wellington area. Annals of the University of Stellenbosch, vol 49 (A5)

    Google Scholar 

  • Raimbourg H, Tadahiro S, Yamaguchi A, Yamaguchi H, Gaku K (2009) Horizontal shortening versus vertical loading in accretionary prisms. Geochem Geophys Geosyst (G3) 10(4):1–17

    Google Scholar 

  • Rapela CW, Fanning MC, Casquet C, Pankhurst RJ, Spalletti C, Poire D, Baldo EG (2011) The Ria de la Plata Craton and adjoining Pan-African/Brasiliano terranes: their origin and incorporation into SW Gondwana. Gondwana Res 20:673–690

    Article  Google Scholar 

  • Robin P-YF, Cruden AR (1994) Strain and vorticity patterns in ideally ductile transpression zones. J Struct Geol 15:1–20

    Google Scholar 

  • Rowe CD, Backeberg NR, Van Rensberug T, McLennan SA, Faber C, Curtis C, Viglietti PA (2010) Structural geology of Robben Island: implications for the tectonic environment of Saldanian deformation. S Afr J Geol 113:57–72

    Article  Google Scholar 

  • Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa. J Afr Earth Sci 21:141–155

    Article  Google Scholar 

  • Rozendaal A, Gresse PG, Scheepers R De, Beer CH (1994) Structural setting of the Riviera W-Mo deposit, Western Cape, South Africa. S Afr J Geol 97:184–195

    Google Scholar 

  • Rozendaal A, Gresse PG, Scheepers R, Le Roux JP (1999) Neoproterozoic to early Cambrian crustal evolution of the Pan-African Saldania belt, South Africa. Precambr Res 97:303–323

    Article  Google Scholar 

  • Santra M, Steel RJ, Olariu C, Sweet ML (2013) Stages of sedimentary prism development on a convergent margin—Eocene Tyee forearc basin, Coast Range, Oregon, USA. Global Planet Change 103:207–231

    Article  Google Scholar 

  • Scheepers R (1995) Geology and petrogenesis of the Late-Precambrian S-, I-, and A-type granitoids in the Saldania belt, Western Cape Province, South Africa. J Afr Earth Sci 21:35–58

    Article  Google Scholar 

  • Scheepers R, Schoch AE (2006) The Cape granite suite. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, pp 421–432

    Google Scholar 

  • Schoch AE (1956) The cataclasites of Northwest Bay. Ann Univ Stellenbosch 37A(10):659–808

    Google Scholar 

  • Schoch AE (1975) The Darling granite batholith. Ann Univ Stellenbosch 1(A1):1–104

    Google Scholar 

  • Schoonmaker A, Kidd WSF, Bradley DC (2005) Foreland-forearc collisional granitoid and mafic magmatism caused by lower lithospheric slab breakoff: the Acadian of Maine, and other orogens. Geology 33:961–964

    Article  Google Scholar 

  • Slabber N (1995) The geology and geochemistry of the Bridgetown Formation of the Malmesbury group, Western Cape province. M.Sc. Thesis (unpubl), University of Stellenbosch, 99 p

    Google Scholar 

  • South African Committee for stratigraphy (SACS) (1980) Stratigraphy of South Africa. Part 1 (Comp. L. E. Kent). Lithostratigraphy of the Republic of South Africa, SW Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook Geol Surv S A 8

    Google Scholar 

  • Stevens G, Villaros A, Moyen J-F (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12

    Article  Google Scholar 

  • Tankard AJ, Jackson MPA, Eriksson KA, Hobday DK, Hunter DR, Minter WEL (1982) Crustal evolution of Southern Africa: 3.5 billion years of earth history. Springer, New York, p 523

    Book  Google Scholar 

  • Tankard A, Welsink H, Aukes P, Newton R, Stettler E (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar Pet Geol 26:1379–1412

    Article  Google Scholar 

  • Thamm AG and Johnson MR (2006) The Cape Supergroup. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, pp 443–460

    Google Scholar 

  • Theron, J.N. (1984) The geology of Cape Town and environs, explanation of sheets 3318CD and DC and 3418 AB, AD and BA. Geological Survey of South Africa, 77 p

    Google Scholar 

  • Theron JN, Gresse PG, Siegfried HP, Rogers J (1992) The geology of the Cape Town area. Explanation Sheet 3318. Department of Mineral and Energy Affairs, Geological Survey, Pretoria, 140 p

    Google Scholar 

  • Tikoff B, Teyssier C (1994) Strain modelling of displacement field partitioning in transpressional orogens. J Struct Geol 10:1575–1588

    Article  Google Scholar 

  • Tikoff B, Peterson K (1998) Physical experiments of transpressional folding. J Struct Geol 20:661–672

    Article  Google Scholar 

  • Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape granite suite. Lithos 112:217–235

    Article  Google Scholar 

  • Villaros A, Buick IS, Stevens G (2011) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contributions to Mineralogy and Petrology. https://doi.org/10.1007/s00410-011-0073-9

  • Von Veh MW (1983) Aspects of Sedimentation, structure and tectonic evolution in the Tygerberg Terrane, southwestern Cape Province, vol 32. Bulletin of the Precambrian Research Unit, University of Cape Town, 84 p

    Google Scholar 

  • Von Veh MW (1993) The stratigraphy and structural evolution of the Lste Proterozoic Gariep Belt in the Sendelingsdrif-Annisfontein area, northwestern Cape Province, vol 38. Bulletion Precambrian Research Unit University of Cape Town, 174 p

    Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source composition. J Geol 95:731–750

    Article  Google Scholar 

Download references

Acknowledgements

Much of this work is based on the work of many Stellenbosch geology students over a period of more than 15 years. We thank these students for their enthusiasm, sharing their results and contributing to our knowledge of Western Cape geology. We also thank the geologists of the Council for Geoscience in the Bellville office for their continued support and discussions, and for providing unpublished maps and reports. AK gratefully acknowledges many enlightening discussions with Gary Stevens and John Clemens of Stellenbosch University on anything granite related. We thank Christie Rowe for a critical, highly detailed and very constructive review of an earlier version of the manuscript, and Siggi Siegesmund for additional comments, editorial guidance and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kisters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kisters, A., Belcher, R. (2018). The Stratigraphy and Structure of the Western Saldania Belt, South Africa and Geodynamic Implications. In: Siegesmund, S., Basei, M., Oyhantçabal, P., Oriolo, S. (eds) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-68920-3_14

Download citation

Publish with us

Policies and ethics