Skip to main content

Review on the Research Progresses in Rotating Detonation Engine

  • Chapter
  • First Online:
Detonation Control for Propulsion

Abstract

Present paper focuses on the comprehensive survey of Rotating Detonation Engine (RDE) and their research from the basic to the advanced level. In this paper, an abridged archival background of Pulse/Rotating Detonation Engine (PDE/RDE) is briefed. This is followed by a short description of a Continuous Spin Detonation (CSD) and a few essential facts from the prior publications. Furthermore, a summarization of the Continuous Detonation Wave Rocket Engine (CDWRE) concepts is examined. At long last, a detailed numerical investigation and experiment work of RDE is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamson, T. C., & Olsson, G. R. (1967). Performance analysis of a rotating detonation wave rocket engine. Acta Astronautica, 13, 405–415.

    Google Scholar 

  • Ar’kov, O. F., et al. (1970). On the spinning-detonation-like properties of high frequency tangential oscillations in combustion chambers of liquid fuel rocket engines. Journal of Applied Mechanics and Technical Physics, 11(1), 159–161.

    Article  Google Scholar 

  • Ashida, T., & Kasahara, J. (2014). Study on detonation engine momentum and thrust loss measurement by ballistic pendulum and laser displacement methods. In 52nd Aerospace Science Meeting, AIAA 2014–1016.

    Google Scholar 

  • Bollay, W. (1960). Pulse detonation jet propulsion. US Patent 2,942,412, 28 June 1960.

    Google Scholar 

  • Borisov, A. A. (2002). Proceeding of the 15th ONR Propulsion Meeting, University of Maryland.

    Google Scholar 

  • Braun, E. M., et al. (2010a). Air-breathing rotating detonation wave engine cycle analysis. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2010–7039, 25–28 July 2010.

    Google Scholar 

  • Braun, E. M., et al. (2010b). Air-breathing rotating detonation wave engine cycle analysis. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2010–7039, 25–28 July 2010.

    Google Scholar 

  • Braun, E. M., et al. (2010c). Detonation engine performance comparison using first and second law analyses. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2010–7040, 25 – 28 July 2010.

    Google Scholar 

  • Brophy, C., Sinibaldi, J., & Netzer, D. (2001). Proceeding of the 14th ONR Propulsion Meeting, Chicago.

    Google Scholar 

  • Bussing, T. R. A., & Pappas, G. (1996). Pulse detonation engine theory and concepts. In S. N. B. Murthy & E. T. Curran (Eds.), Developments in high-speed vehicle propulsion systems, AIAA (pp. 421–472).

    Google Scholar 

  • Bykovskii, F. A., et al. (1980). Detonation combustion of a gas mixture in a cylindrical chamber. Combustion, Explosion and Shock Waves, 16(5), 570–578.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (1994). Explosive combustion of a gas mixture in radial annular chambers. Combustion, Explosion and Shock Waves, 30(4), 510–516.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (1997). Continuous detonation combustion of fuel-air mixtures. Combustion, Explosion and Shock Waves, 33(3), 344–353.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2004). Continuous spin detonation in ducted annular combustors. In G. Roy & S. Frolov (Eds.), Application of detonation to propulsion. Moscow: Torus Press.

    Google Scholar 

  • Bykovskii, F. A., et al. (2005a). Spin detonation of fuel–air mixtures in a cylindrical combustor. Doklady Physics, 50(1), 56–58.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2005b). Continuous spin detonation in annular combustors. Combustion, Explosion and Shock Waves, 41(4), 449–459.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2006a). Continuous spin detonation. Journal of Propulsion and Power, 22(6), 1204–1216.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2006b). Continuous spin detonation of fuel-air mixtures combustion. Combustion, Explosion and Shock Waves, 42(4), 463–471.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2008). Continuous spin detonation of hydrogen–oxygen mixtures. 1. Annular cylindrical combustors. Combustion, Explosion and Shock Waves, 44(2), 150–162.

    Article  Google Scholar 

  • Bykovskii, F. A., et al. (2009). Continuous spin and pulse detonation of hydrogen–air mixtures in a supersonic flow generated by a detonation wave. In 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, 27–31 July 2009.

    Google Scholar 

  • Bykovskii, F. A., et al. (2011). Continuous spin detonation of a hydrogen–air mixture in the air ejection mode. In Detonation Wave Propulsion Workshop, France, 11–13 July 2011.

    Google Scholar 

  • Chung, K. M. (2013). Activities of aerospace science and technology research center. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Claflin, S. (2013). Recent progress in rotating detonation engine development at aerojet rocketdyne. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Clayton, R. M., & Rogero, R. S. (1965). Experimental measurements on a rotating detonation-like wave observed during liquid rocket resonant combustion. Technical Report 32–788, Jet Propulsion Laboratory.

    Google Scholar 

  • Conrad, C., et al. (2001). Proceeding of the 14th ONR Propulsion Meeting, Chicago.

    Google Scholar 

  • Daniau, E., et al. (2005). Pulsed and rotating detonation propulsion systems: First step toward operational engines. In AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2005–3233, Italy, 16–20 May 2005.

    Google Scholar 

  • Davidenko, D. M., et al. (2008). Numerical study of the continuous detonation wave rocket engine. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2008–2680, 28 April – 1 May 2008.

    Google Scholar 

  • Davidenko, D. M., et al. (2009a). Continuous detonation wave engine studies for space application. Progress in propulsion. Physics, 1, 353–366.

    Google Scholar 

  • Davidenko D. M., et al. (2009b) Continuous detonation wave engine studies for space application. Progress in Propulsion Physics, 2009.

    Google Scholar 

  • Davidenko, D., et al. (2011). Theoretical and numerical studies on continuous detonation wave engines. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2011–2334, 11–14 April 2011.

    Google Scholar 

  • Dyer, R. S., & Kaemming, T. A. (2002). The thermodynamic Basis of pulsed detonation engine Thrust production. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2002–4072, 7–10 July 2002.

    Google Scholar 

  • Edwards, B. D. (1977). Maintained detonation waves in an annular channel: A hypothesis which provides the link between classical acoustic combustion instability and detonation waves. International. Symposium on Combustion, 16(1), 1611–1618.

    Article  Google Scholar 

  • Edwards, D. H., et al. (1970). The influence of wall heat transfer on the expansion following a C-J detonation wave. Journal of Physics D: Applied Physics, 3(3), 365–376.

    Article  Google Scholar 

  • Eidelman, S., & Grossmann, W. (1992). Pulsed detonation engine: experimental and theoretical review. In 28th Joint Propulsion Conference and Exhibit, AIAA 1992–3168, U.S.A.

    Google Scholar 

  • Eidelman, S., et al. (1990a). Air-breathing pulsed detonation engine concept: a numerical study. In 26th Join Propulsion Conference. AIAA 1990–2420, U.S.A.

    Google Scholar 

  • Eidelman, S., et al. (1990b). Computational analysis of pulsed detonation engines and applications. In 28th Aerospace Sciences Meeting, AIAA 1990–460, U.S.A.

    Google Scholar 

  • Eidelman, S., et al. (1991). Review of propulsion applications and numerical simulations of the pulse detonation engine concept. Journal of Propulsion and Power, 7(6), 857–865.

    Article  Google Scholar 

  • Endo, T., et al. (2011). Development of pulse-detonation technology in valve-less mode and its application to turbine-drive experiments. In International Workshop on Detonation for Propulsion, Korea, 14–15 November 2011.

    Google Scholar 

  • Eude, Y., & Davidenko, D. (2011). Numerical simulation and analysis of a 3D continuous detonation under rocket engine conditions. France: Detonation Wave Propulsion Workshop. 11–13 July 2011.

    Google Scholar 

  • Falempin, F., et al. (2006). Toward a continuous detonation wave rocket engine demonstrator. In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2006–7956, Australia.

    Google Scholar 

  • Falempin, F., et al. (2008). A contribution to the development of actual continuous detonation wave engine. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 28 April – 1 May 2008.

    Google Scholar 

  • Fievisohn, R. (2012). Rotating detonation engine research at AFRL. In International Workshop on Detonation for Propulsion, Japan, 3–5 September 2012.

    Google Scholar 

  • Frolov, S. M., Basevich, V.Ya., & Aksenov, V. S. (2001). Proceeding of the 14th ONR Propulsion Meeting, Chicago.

    Google Scholar 

  • Frolov, S., Dubrovskii, A., & Ivanov, V. (2012). Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian Journal of Physical Chemistry B, 7(1), 35–43.

    Article  Google Scholar 

  • Fujiwara, et al. (2009). Stabilization of detonation for any incoming mach numbers. Combustion, Explosion and Shock Waves, 45(5), 603–605.

    Article  Google Scholar 

  • Gawahara, K., et al. (2013). Detonation engine development for reaction control systems of a spacecraft. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013–3721.

    Google Scholar 

  • Gutmark, E. J. (2014). Comparative numerical study of RDE injection designs. In 52nd Aerospace Sciences Meeting, AIAA 2014–0285.

    Google Scholar 

  • Hayashi, et al. (2009). Sensitivity analysis of rotating detonation engine with a detailed reaction model. In 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2009–633, 5–8 January 2009.

    Google Scholar 

  • Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic cycle analysis of pulse detonation engines. Journal of Propulsion and Power, 18(1), 68–76.

    Article  Google Scholar 

  • Helman, D., et al. (1986). Detonation pulse engine. In 22nd Join Propulsion Conference, AIAA 1986–1683, U.S.A.

    Google Scholar 

  • Hishida, et al. (2009). Fundamentals of rotating detonations. Shock Waves, 19(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffmann, N. (1940). Reaction propulsion by intermittent detonative combustion (trans: Volkenrode). German ministry of supply, AI152365.

    Google Scholar 

  • International Workshop on Detonation for Propulsion. (2013). http://conf.ncku.edu.tw/iwdp2013/. Accessed 26 July 2013.

  • Kailasanath, K. (1999). Applications of detonations to propulsion: A review. In 37th aerospace Sciences Meeting and Exhibit, AIAA 1999–1067, U.S.A.

    Google Scholar 

  • Kailasanath, K. (2011a). The rotating-detonation-wave engine concept: A brief status report. In 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011–580, 4–7 January 2011.

    Google Scholar 

  • Kailasanath, K. (2011b). The rotating-detonation-wave engine concept: A brief status report. In 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011–580, 4–7 January 2011.

    Google Scholar 

  • Kailasanath, K., & Schwer, D. A. (2011). Effect of inlet on fill region and performance of rotating detonation engines. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2011–6044, 31 July – 03 August 2011.

    Google Scholar 

  • Kailasanath, K., & Schwer, D. A. (2013). Rotating detonation engine research at NRL. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Kailasanath, K., & Schwer, D. A. (2014). Effect of low pressure ratio on exhaust plumes of rotating detonation engines. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2014–3901.

    Google Scholar 

  • Kato, Y., et al. (2014). Thrust measurement of rotating detonation engine by sled test. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2014–4034.

    Google Scholar 

  • Kindracki, J., Institute of Heat Engineering, WUT. (2012). project no. UMO-2012/05/D/ST8/02308, granted by National Science Centre, Poland.

    Google Scholar 

  • Kindracki, J., et al. (2009). Experimental and numerical research on rotating detonation in small rocket engine model. Combustion Engines, 2009.

    Google Scholar 

  • Knappe, B. M., & Edwards, C. F. (2001). Proceeding of the 14th ONR Propulsion Meeting, Chicago.

    Google Scholar 

  • Knappe, B. M., & Edwards, C. F. (2002). Proceeding of the 15th ONR Propulsion Meeting, University of Maryland.

    Google Scholar 

  • Kuznetsov, M. (2013). Flame acceleration and DDT in linear and circular geometries. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Lentsch, A., et al. (2005). Overview of current French activities on PDRE and continuous detonation wave rocket engines. In AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2005–3232, Italy, 16–20 May 2005.

    Google Scholar 

  • Lu, F. K., et al. (2011a). Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts (invited). In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 31 July – 03 August 2011.

    Google Scholar 

  • Lu, F. K., et al. (2011b). Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts (invited). In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 31 July – 03 August 2011.

    Google Scholar 

  • Lu, et al. (2011c). Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2011–6043, 31 July – 03 August 2011.

    Google Scholar 

  • Lynch, E. D., & Edelman, R. B. (1994). Analysis of flow processes in the pulse detonation wave engine. In 30th Joint Propulsion Conference and Exhibit, AIAA 1994–3222, U.S.A.

    Google Scholar 

  • Lynch, E. D., et al. (1994). Computational fluid dynamic analysis of the pulse detonation engine concept. In 32nd Aerospace Sciences Meeting and Exhibit, AIAA 1994–264, U.S.A.

    Google Scholar 

  • McGahan, C. J., et al. (2014). Exhaust gas analysis of a rotating detonation engine using tunable diode laser absorption spectroscopy. In 52nd Aerospace Science Meeting, AIAA 2014–0391.

    Google Scholar 

  • Milanowski, et al. (2007). Numerical simulation of rotating detonation in cylindrical channel. In 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, 23–27 July 2007.

    Google Scholar 

  • Naour, B. L., Falempin, F., & Miquel, F. (2011). Recent experimental results obtained on continuous detonation wave engine. France: Detonation Wave Propulsion Workshop. 11–13 July 2011.

    Google Scholar 

  • Naples, A. (2011). Recent progress in detonation. In International Workshop on Detonation for Propulsion, Korea, 14–15 November 2011.

    Google Scholar 

  • Nicholls, J. A., Wilkinson, H. R., & Morrison, R. B. (1957). Intermittent detonation as a thrust-producing mechanism. Journal of Jet Propulsion, 27(5), 534–541.

    Article  Google Scholar 

  • Nicholls, J. A., Cullen, R. E., & Ragland, K. W. (1966). Feasibility studies of a rotating detonation wave rocket motor. Journal of Spacecraft and Rockets, 3(6), 893–898.

    Article  Google Scholar 

  • Nordeen, C. A. (2013). Thermodynamics of a rotating detonation engine (Doctoral Dissertations, University of Connecticut Graduate School).

    Google Scholar 

  • Nordeen, C. A., et al. (2011). Thermodynamic modeling of a rotating detonation engine. In 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011–803, 4 – 7 January 2011.

    Google Scholar 

  • Nordeen, C. A., et al. (2014). Area effects on rotating detonation engine performance. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2014–3900.

    Google Scholar 

  • Oppenheim, A. K., Manson, N., & Wagner, H. G. (1963). Recent progress in detonation research. AIAA Journal, 1(10), 2243–2252.

    Article  Google Scholar 

  • Paxson, D. E. (2014). Numerical analysis of a rotating detonation engine in the relative reference frame. In 52nd Aerospace Sciences Meeting, AIAA 2014–0284.

    Google Scholar 

  • Roy, G. D. (2013). Propulsion and detonation engines-a navy perspective. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2000a). High-speed deflagration and detonation: Fundamentals and control. Moscow: Elex-KM Publishers.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2000b). High-speed deflagration and detonation: Fundamentals and control (pp. 289–302). Moscow: Elex-KM Publishers.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2002a). Advances in confined detonations (pp. 150–157). Moscow: Torus Press.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2002b). Advances in confined detonations (pp. 231–234). Moscow: Torus Press.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2003a). Confined detonations and pulse detonation engines (pp. 59–72). Moscow: Torus Press.

    Google Scholar 

  • Roy, G. D., et al. (Eds.). (2003b). Confined detonations and pulse detonation engines (pp. 219–234). Moscow: Torus Press.

    Google Scholar 

  • Roy, G. D., et al. (2004). Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30(6), 545–672.

    Article  Google Scholar 

  • Schwer, D. A., & Kailasanath, K. (2010). Numerical investigation of rotating detonation engines. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2010–6880, 25–28 July 2010.

    Google Scholar 

  • Schwer, D. A., & Kailasanath, K. (2011). Numerical study of the effects of engine size on rotating detonation engines. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011–581, 4–7 January 2011.

    Google Scholar 

  • Schwer, D. A., et al. (2011). Numerical investigation of the physics of rotating-detonation-engines. Proceedings of the Combustion Institute, 33(2), 2195–2202.

    Article  Google Scholar 

  • Schwer, D. A., et al. (2014). Towards efficient, unsteady, three-dimensional rotating detonation engine simulations. In 52nd Aerospace Sciences Meeting, AIAA 2014–1014.

    Google Scholar 

  • Shen, I., & Adamson, T. C. (1973). Theoretical analysis of a rotating two phase detonation in a rocket motor. Technical Report, NASA CR 121194.

    Google Scholar 

  • Siechel, M., & David, T. S. (1998a). Transfer behind detonations in H2-O2 mixtures. NASA technical. Notes, 4(6), 1098–1099.

    Google Scholar 

  • Siechel, M., & David, T. S. (1998b). Transfer behind detonations in H2-O2 mixtures. NASA Technical Notes, 4(6), 1098–1099.

    Google Scholar 

  • Tsuboi, N., et al. (2011). Three-dimensional simulation on a rotating detonation engine: Three-dimensional shock structure. In 4th International Symposium on Energy Materials and their Applications, Japan, 16–18 November 2011.

    Google Scholar 

  • Tsuboi, N., Hayashi, A., & Kojima, T. (2013). Numerical study on a rotating detonation engine at KIT. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Voitsekhovskii, B. V. (1957). About spinning detonation. Doklady Akademii Nauk SSSR, 114(4), 717–720.

    Google Scholar 

  • Voitsekhovskii, B. V. (1959). Stationary detonation. Doklady Akad. Nauk. USSSR, 129(6), 1254–1256.

    Google Scholar 

  • Voitsekhovskii, B. V. (1960). J. Of app. Mech. And. Technical Physics, 3, 157–164.

    Google Scholar 

  • Voitsekhovskii, B. V., & Kotov, B. E. (1958). Optical investigation of the front of spinning detonation wave. Izv. Sibirsk. Otd. Akad. Nauk SSSR, 4, 79.

    Google Scholar 

  • Voitsekhovskii, B. V., Mitrofanov, V. V., & Topchiyan, M. E. (1963a). Structure of detonation front in gases. Novosibirsk: Siberian Branch USSR Academy Science.

    Google Scholar 

  • Voitsekhovskii, B. V., Mitrofanov, V. V., & Topchiyan, M. E. (1963b). Structure of the detonation front in gases. Novosibirsk: Izd-vo SO AN SSSR.

    Google Scholar 

  • Voitsekhovskii, B. V., Mitrofanov, V. V., & Topchiyan, M. E. (1969). Structure of the detonation front in gases (survey). Fizika Goreniya i Vzryva, 5(3), 385–395.

    Google Scholar 

  • Wang, J. P. (2012). Numerical and experimental study on continuously rotating detonation engine at Peking university. In International Workshop on Detonation for Propulsion, Japan, 3–5 September 2012.

    Google Scholar 

  • Wei, F. A. N. (2013). Efforts to increase the operating frequency of two-phase pulse detonation rocket engines. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Wen, C. Y. (2013). Experimental study on self-ignition of a pre-heated H2 transverse jet in a supersonic free-stream. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Winfree, D. D., & Hunter, L. G. (1999). Pulse detonation igniter for pulse detonation chambers. US Patent 5,937,635, 17 August 1999.

    Google Scholar 

  • Wolanski, P. (2011a). Graphics processors as a tool for rotating detonation simulations. In 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, 24–29 July 2011.

    Google Scholar 

  • Wolanski, P. (2011b). Rotating detonation wave stability. In 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, 24–29 July 2011.

    Google Scholar 

  • Wolanski, P. (2011c). Detonation propulsion. Journal of KONES Powertrain and Transport, 18(3), 515–521.

    Google Scholar 

  • Wolanski, P. (2013a). Detonative propulsion. Proceedings of the Combustion Institute, 34(1), 125–158.

    Article  Google Scholar 

  • Wolanski, P. (2013b). Research on rotating detonation engine. In Detonation Wave Propulsion Workshop, 2013.

    Google Scholar 

  • Wolanski, P. (2013c). Research on RDE in POLAND. In International Workshop on Detonation for Propulsion, Taiwan, 26–28 July 2013.

    Google Scholar 

  • Yamada, et al. (2010). Numerical analysis of threshold of limit detonation in rotating detonation engine. In 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2010–153, 4–7 January 2010.

    Google Scholar 

  • Yi, T. H., et al. (2009a). Propulsive performance of a continuously rotating detonation-based propulsion system. In 22nd International Colloquium on the Dynamics of Explosions and Reactive System, Minsk, 27–31 July 2009.

    Google Scholar 

  • Yi, T. H., et al. (2009b). Propulsive performance of a continuously rotating detonation-based propulsion system. In 22nd International Colloquium on the Dynamics of Explosions and Reactive System, Minsk, 27–31 July 2009.

    Google Scholar 

  • Yi, T. H., et al. (2011). Propulsive performance study of continuously rotational detonation engine. In International Workshop on Detonation for Propulsion, Korea, 14–15 November 2011.

    Google Scholar 

  • Yu, S. T. J. (2001). Proceeding of the 14th ONR Propulsion Meeting, Chicago.

    Google Scholar 

  • Zhdan, S. A. (2008). Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity. Combustion, explosion and. Shock Waves, 44(6), 690–697.

    Article  Google Scholar 

  • Zhdan, S. A., et al. (2007). Mathematical modeling of a rotating detonation wave in a hydrogen oxygen mixture. Combustion, Explosion and Shock Waves, 43(4), 449–459.

    Article  Google Scholar 

  • Zhou, R., & Wang, J.-P. (2012). Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combustion and Flame, 159(12), 3632–3645.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Yeol Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nejaamtheen, M.N., Kim, JM., Choi, JY. (2018). Review on the Research Progresses in Rotating Detonation Engine. In: Li, JM., Teo, C., Khoo, B., Wang, JP., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68906-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68906-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68905-0

  • Online ISBN: 978-3-319-68906-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics