Skip to main content

Application of Detonation Waves to Rocket Engine Chamber

  • Chapter
  • First Online:
Detonation Control for Propulsion

Abstract

We present the results of experiments performed with a rotating detonation engine using continuous detonation in an annular combustor to create thrust. Detonation waves propagate in a supersonic and very small region, allowing shortening of the combustor. The combustor of RDE causes high-pressure loss when the propellant is injected, and cooling is necessary due to high heat flux. However, the combustion efficiency of detonation combustion in an annular combustor is the most important, but have not been fully elucidated. In addition, the influence of the injector shape and direct cooling of a rotating detonation combustor require clarification. This paper reports the measurement results of combustor stagnation pressure and thrust, the influence of injector shape on c * efficiency, and the estimate of heat flux. The c * efficiency was 88–100% when we used the convergent or convergent-divergent nozzle and the equivalence ratio was less than 1.0. The shape of the injector influenced wave propagation mode, but the mode did not change the c * efficiency. We estimated time-spatial average heat flux from the terminal temperature, and the heat flux was 8.1 ± 1.8 MW/m2 in no water injection condition. The rocket RDE sled test was successfully performed. The total mass of the rocket RDE system was 58.3 kg, total time averaged thrust was 201 N, the time averaged mass flow rate was 143 g/s, and the specific impulse was 144 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A inj :

total injector area

A t :

throat area

c * :

characteristic velocity

ER :

equivalence ratio

F t :

thrust

g :

gravitational acceleration

I sp :

specific impulse

M :

Mach number

\( \dot{m} \) :

mass flow rate

P :

pressure

P c :

combustor stagnation pressure

R :

gas constant

T :

temperature

T c :

adiabatic flame temperature

γ:

ratio of specific heat

\( {\eta}_{{\mathrm{c}}^{\ast }} \) :

c * efficiency

i:

ideal

m:

measured

References

  • Bykovskii, F. A., Sergey, Z. A., & Vedernikov, E. F. (2006). Continuous spin detonations. Journal of Propulsion and Power, 22(6), 1204–1216.

    Article  Google Scholar 

  • Claflin, S. (2012). Recent progress in continuous detonation engine development at Pratt & Whitney Rocketdyne. Paper presented at International Workshop on Detonation for Propulsion 2012, Tsukuba, 3–5 September 2012.

    Google Scholar 

  • Dubrovskii, A. V., Ivanov, V. S., & Frolov, S. M. (2015). Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and sir. Russian Journal of Physical Chemistry B, 9(1), 104–119.

    Article  Google Scholar 

  • Fievisohn, R. T., & Yu, K. H. (2017). Steady-state analysis of rotating detonation engine flowfields with the method of characteristics. Journal of Propulsion and Power, 33(1), 89–99.

    Article  Google Scholar 

  • Fotia, M. L., Kaemming, T. A., Hoke, J. L., and Schauer, F. (2016). Thermodynamics modelling and the operation of rotating detonation engines at elevated inlet temperatures. Paper presented at 2016 International Workshop on Detonation for Propulsion, Temasek Laboratories, National University of Singapore, 12–15 July 2016.

    Google Scholar 

  • Frolov, S. M., Dubrovskii, A. V., & Ivanov, V. S. (2013). Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian Journal of Physical Chemistry B, 7(1), 35–43.

    Article  Google Scholar 

  • Frolov, S. M., Aksenov, V. S., Gusev, P. A., Ivanov, V. S., Medvedev, S. N., & Shamshin, I. O. (2014). Experimental proof of the energy efficiency of the Zel’dovich thermodynamic cycle. Doklady Physical Chemistry, 459(2), 207–211.

    Article  Google Scholar 

  • Frolov, S. M., Aksenov, V. S., & Ivanov, V. S. (2015a). Experimental proof of Zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen–oxygen fuel mixture. International Journal of Hydrogen Energy, 40(21), 6970–6975.

    Article  Google Scholar 

  • Frolov, S. M., Aksenov, V. S., Ivanov, V. S., & Shamshin, I. O. (2015b). Large-scale hydrogeneair continuous detonation combustor. International Journal of Hydrogen Energy, 40(3), 1616–1623.

    Article  Google Scholar 

  • Fujii, J., Kumazawa, Y., Matsuo, A., Nakagami, S., & Kasahara, J. (2017). Numerical investigation on velocity deficit of detonation wave in RDE chamber. Proceedings of the Combustion Institute, 36(2), 2665–2672.

    Article  Google Scholar 

  • Gawahara, K., Nakayama, H., Kasahara, J., Tomioka, S., & Hiraiwa, T. (2013). Detonation engine development for reaction control systems of a spacecraft. Paper presented at 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit and 11th International Energy Conversion Engineering Conference, AIAA-2013–3721, San Jose Convention Center, San Jose, July 15–17, 2013.

    Google Scholar 

  • Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic cycle analysis of pulse detonation engines. Journal of Propulsion and Power, 18(1), 68–76.

    Article  Google Scholar 

  • Hishida, M., Fujiwara, T., & Wolański, P. (2009). Fundamentals of rotating detonations. Shock Waves, 19(1), 1–10.

    Article  MATH  Google Scholar 

  • Hoke, J. L., Bradley, R. P., Brown, A. C., Litke, P. J., Stutrud, J. S., and Schauer, F. R. (2010). Development of a pulse detonation engine for flight. Paper presented at Symposium on Shock Waves in Japan (pp. 239–246).

    Google Scholar 

  • Ishihara, K., Nishimura, J., Goto, K., Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., and Funaki, I. (2017). Study on a long-time operation towards rotating detonation rocket engine flight demonstration. Paper presented at SciTech 2017, 55th AIAA Aerospace Science Meeting, AIAA 2017–1062, Grapevine, Texas, USA, January 8–12, 2017.

    Google Scholar 

  • Kailasanath, K. (2000). Review of propulsion applications of detonation waves. AIAA Journal, 38(9), 1698–1708.

    Article  Google Scholar 

  • Kailasanath, K. (2003). Recent developments in the research on pulse detonation engines. AIAA Journal, 41(2), 145–159.

    Article  Google Scholar 

  • Kasahara, J., Hasegawa, A., Nemoto, T., Yamaguchi, H., Yajima, T., & Kojima, T. (2007). Performance validation of a single-tube pulse detonation rocket system. Journal of Propulsion and Power, 25(1), 173–180.

    Article  Google Scholar 

  • Kato, Y., Ishihara, K., Matsuoka, K., Kasahara, J., Matsuo, A., and Funaki, I. (2016). Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle. Paper presented at 54th AIAA Aerospace Sciences Meeting, AIAA 2016–1406, San Diego, January 4–8, 2016.

    Google Scholar 

  • Kindracki, J., Wolański, P., & Gut, Z. (2011). Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves, 21(2), 75–84.

    Article  Google Scholar 

  • Lu, F. K., & Braun, E. M. (2014). Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. Journal of Propulsion and Power, 30(5), 1125–1142.

    Article  Google Scholar 

  • Matsuoka, K., Morozumi, T., Takagi, S., Kasahara, J., Matsuo, A., & Funaki, I. (2016). Flight validation of a rotary-valved four-cylinder pulse detonation rocket. Journal of Propulsion and Power, 32(2), 383–391.

    Article  Google Scholar 

  • Nakagami, S., Matsuoka, K., Kasahara, J., Kumazawa, Y., Fujii, J., Matsuo, A., & Funaki, I. (2017a). Experimental visualization of the structure of rotating detonation waves in a disk-shaped combustor. Journal of Propulsion and Power, 33(1), 80–88.

    Article  Google Scholar 

  • Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., & Funaki, I. (2017b). Experimental study of the structure of forward-tilting rotating detonation waves and highly maintained combustion chamber pressure in a disk-shaped combustor. Proceedings of the Combustion Institute, 36(2), 2673–2680.

    Article  Google Scholar 

  • Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., & Funaki, I. (2012). Stable detonation wave propagation in rectangular-cross-section curved channels. Combustion and Flame, 159(2), 859–869.

    Article  Google Scholar 

  • Nordeen, C. A. (2013). Thermodynamics of a rotating detonation engine, doctoral dissertations, University of Connecticut, 2013.

    Google Scholar 

  • Naples, A., Hoke, J., Battelle, R., Wagner, M., and Schauer, F. (2017). Rotating detonation engine implementation into an open-loop T63 gas turbine engine. Paper presented at 55th AIAA Aerospace Sciences Meeting, AIAA 2017–1747, Grapevine, 9–13 January, 2017.

    Google Scholar 

  • Paxson, D. E. and Naples, A. (2017). Numerical and analytical assessment of a coupled rotating detonation engine and turbine experiment. Paper presented at 55th AIAA Aerospace Sciences Meeting, AIAA 2017–1746, Grapevine, 9–13 January, 2017.

    Google Scholar 

  • Schwer, D., & Kailasanath, K. (2011). Numerical investigation of the physics of rotating-detonation-engines. Proceedings of the Combustion Institute, 33(2), 2195–2202.

    Article  Google Scholar 

  • Schwer, D., & Kailasanath, K. (2013). Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proceedings of the Combustion Institute, 34(2), 1991–1998.

    Article  Google Scholar 

  • Stechmann, D., Heister, S. D., and Sardeshmukh, S. (2017). High-pressure rotating detonation engine testing and flameholding analysis with hydrogen and natural gas. Paper presented at 55th AIAA Aerospace Sciences Meeting, AIAA 2017–1931, Grapevine, 9–13 January, 2017.

    Google Scholar 

  • Theuerkauf, S. W., Schauer, F. R., Anthony, R., and Hoke, J. L. (2015). Experimental characterization of high-frequency heat flux in a rotating detonation engine. Paper presented at 53rd AIAA Aerospace Science Meeting, AIAA 2015–1603, Kissimmee, 5–9 January, 2015.

    Google Scholar 

  • Talley, D. G., & Coy, E. B. (2002). Constant volume limit of pulsed propulsion for a constant γ ideal gas. Journal of Propulsion and Power, 18(2), 400–406.

    Article  Google Scholar 

  • Voitsekhovskii, B. V. (1960). Stationary spin detonation. Soviet. Journal of Applied Mechanics and Technical Physics, 3, 157–164.

    Google Scholar 

  • Voitsekhovskii, B. V., Mitrofanov, V. V., & Topchian, M. E. (1967). Investigation of the structure of detonation waves in gases. Symposium (International) on Combustion, 12(1), 829–837.

    Article  Google Scholar 

  • Wolan´ski, P. (2013). Detonative propulsion. Proceedings of the Combustion Institute, 34(1), 125–158.

    Article  Google Scholar 

  • Wu, Y., Ma, F., & Yang, V. (2003). System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines. Journal of Propulsion and Power, 19(4), 556–567.

    Article  Google Scholar 

Download references

Acknowledgements

The present RDE development was subsidized by a “Study on Innovative Detonation Propulsion Mechanism,” Research-and-Development Grant Program (Engineering) from the Institute of Space and Astronautical Science, the Japan Aerospace Exploration Agency. The fundamental device development was subsidized by a Grant-in-Aid for Scientific Research (A), No. 24246137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Kasahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasahara, J. et al. (2018). Application of Detonation Waves to Rocket Engine Chamber. In: Li, JM., Teo, C., Khoo, B., Wang, JP., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68906-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68906-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68905-0

  • Online ISBN: 978-3-319-68906-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics