Skip to main content

Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells

  • Chapter
  • First Online:
  • 1195 Accesses

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 99))

Abstract

The photoelectrochemical light-harvesting systems constitute an important part of the assay of available solar light conversion approaches, along with the photovoltaic light conversion and endothermal photochemical reactions such as the hydrogen production, CO2 reduction, etc. [1–12]. Today, the realm of semiconductor-based solar cells is dominated (up to 85%) by “classic” photovoltaic systems based on single-crystal and polycrystalline silicon with a light conversion efficiency reaching 14–19 and 8–10%, respectively [2, 4, 12]. At the same time, a high price of the single-crystalline Si stimulates a search for alternative technologies based on more available materials, such as amorphous silicon, thin-film CdTe-based heterostructures [2, 12], organic conjugated polymers [2, 13–15], liquid-junction solar cells [2, 4–11], etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Manassen J, Cahen D, Hodes G, Sofer A (1976) Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters. Nature 263:97–100. doi:10.1038/263097a0

    Article  Google Scholar 

  2. Bhubaneswari P, Iniyanb S, Ranko G (2011) A review of solar photovoltaic technologies. Renew Sus En Rev 15:1625–1636. doi:10.1016/j.rser.2010.11.032

    Article  Google Scholar 

  3. Kamat PV (2013) Energy outlook for planet earth. J Phys Chem Lett 4:1727–1729. doi:10.1021/jz400902s

    Article  Google Scholar 

  4. Rühle S, Shalom M, Zaban A (2010) Quantum dot sensitized solar cells. ChemPhysChem 11:2290–2304. doi:10.1002/cphc.201000069

    Article  Google Scholar 

  5. Hodes G (2008) Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J Phys Chem C 112:17778–17787. doi:10.1021/jp803310s

    Article  Google Scholar 

  6. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753. doi:10.1021/jp806791s

    Article  Google Scholar 

  7. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688. doi:10.1021/cr100243p

    Article  Google Scholar 

  8. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860. doi:10.1021/jp066952u

    Article  Google Scholar 

  9. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918. doi:10.1021/jz400052e

    Article  Google Scholar 

  10. Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10:2735–2741. doi:10.1021/nl102122x

    Article  Google Scholar 

  11. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  12. Mlinar V (2013) Engineered nanomaterials for solar energy conversion. Nanotechnology 24:042011

    Article  Google Scholar 

  13. Fan X, Zhang M, Wang X et al (2013) Recent progress in organic–inorganic hybrid solar cells. J Mater Chem A 1:8694–8709. doi:10.1039/C3TA11200D

    Article  Google Scholar 

  14. Hodes G, Cahen D (2012) All-solid-state, semiconductor-sensitized nanoporous solar cells. Acc Chem Res 45:705–713. doi:10.1021/ar200219h

    Article  Google Scholar 

  15. Huang J, Yinb Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861–3877. doi:10.1039/C1EE01873F

    Article  Google Scholar 

  16. Anta JA, Guillen E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116:11413–11425. doi:10.1021/jp3010025

    Article  Google Scholar 

  17. Selinsky RS, Ding Q, Faber MS et al (2013) Quantum dot nanoscale heterostructures for solar energy conversion. Chem Soc Rev 42:2963–2985. doi:10.1039/C2CS35374A

    Article  Google Scholar 

  18. Yang Z, Chen CY, Roy P, Chang HT (2011) Quantum dot-sensitized solar cells incorporating nanomaterials. Chem Commun 47:9561–9571. doi:10.1039/C1CC11317H

    Article  Google Scholar 

  19. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108. doi:10.1002/adma.200803827

    Article  Google Scholar 

  20. Weintraub B, Zhou Z, Li Y, Deng Y (2010) Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2:1573–1587. doi:10.1039/C0NR00047G

    Article  Google Scholar 

  21. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131(17):6050–6051

    Google Scholar 

  22. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842. doi:10.1038/nmat4065

    Article  Google Scholar 

  23. Petrovic M, Chellappan V, Ramakrishna S (2015) Perovskites: solar cells & engineering applications—materials and device developments. Sol Energy 122:678–699. doi:10.1016/j.solener.2015.09.041

    Article  Google Scholar 

  24. Chen J, Zhou S, Jin S et al (2016) Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C 4:11–27. doi:10.1039/c5tc03417e

    Article  Google Scholar 

  25. Meng L, You J, Guo TF, Yang Y (2016) Recent advances in the inverted planar structure of perovskite solar cells. Acc Chem Res 49:155–165. doi:10.1021/acs.accounts.5b00404

    Article  Google Scholar 

  26. Zhao Y, Zhu K (2016) Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45:655–689. doi:10.1039/c4cs00458b

    Article  Google Scholar 

  27. Heo JH, Im SH, Kim HJ et al (2012) Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer. J Phys Chem C 116:20717–20721. doi:10.1021/jp305150s

    Article  Google Scholar 

  28. Hodes G, Manassen J (1980) Electrocatalytic electrodes for the polysulfide redox system. J Electrochem Soc 127:544–549. doi:10.1149/1.2129709

    Article  Google Scholar 

  29. Chen H, Zhu L, Liu H, Li W (2013) ITO porous film-supported metal sulfide counter electrodes for high-performance quantum-dot-sensitized solar cells. J Phys Chem 117:3739–3746. doi:10.1021/jp309967w

    Article  Google Scholar 

  30. Meng K, Chen G, Ravindranathan Thampi K (2015) Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. J Mater Chem A 3:23074–23089. doi:10.1039/c5ta05071e

    Article  Google Scholar 

  31. Wang S, Tian J (2016) Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv 6:90082–90099. doi:10.1039/c6ra19226b

    Article  Google Scholar 

  32. Eskandari M, Ahmadi V, Ghahary R (2015) Copper sulfide/lead sulfide as a highly catalytic counter electrode for zinc oxide nanorod based quantum dot solar cells. Electrochim Acta 151:393–398. doi:10.1016/j.electacta.2014.11.037

    Article  Google Scholar 

  33. Yang Z, Chen CY, Liu CW et al (2011) Quantum dot–sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv Energy Mater 1:259–264. doi:10.1002/aenm.201000029

    Article  Google Scholar 

  34. Khalili SS, Dehghani H (2016) Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance. RSC Adv 6:10880–10886. doi:10.1039/c5ra24053k

    Article  Google Scholar 

  35. Gopi C, Bae J, Venkata-Haritha M et al (2015) One-step synthesis of solution processed time dependent highly efficient and stable PbS counter electrodes for quantum dot-sensitized solar cells. RSC Adv 5:107522–107532. doi:10.1039/c5ra22715a

    Article  Google Scholar 

  36. Nayak PK, Garcia-Belmonte G, Kahn A et al (2012) Photovoltaic efficiency limits and material disorder. Energy Environ Sci 5:6022–6039. doi:10.1039/C2EE03178G

    Article  Google Scholar 

  37. Salant A, Shalom M, Tachan Z et al (2012) Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett 12:2095–2100. doi:10.1021/nl300356e

    Article  Google Scholar 

  38. Abrutis A, Plausinaitiene V, Skapas M et al (2008) Chemical vapor deposition of chalcogenide materials for phase-change memories. Microelectron Eng 85:2338–2341. doi:10.1016/j.mee.2008.09.014

    Article  Google Scholar 

  39. Perednis D, Gauckler LJ (2005) Thin film deposition using spray pyrolysis. J Electroceram 14:103–111. doi:10.1007/s10832-005-0870-x

    Article  Google Scholar 

  40. Park YM, Andre R, Kasprzak J et al (2007) Molecular beam epitaxy of CdSe epilayers and quantum wells on ZnTe substrate. Appl Surf Sci 253:6946–6950. doi:10.1016/j.apsusc.2007.02.012

    Article  Google Scholar 

  41. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. doi:10.1002/adma.200904093

    Article  Google Scholar 

  42. Tada H, Fujishimaa M, Kobayashi H (2011) Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem Soc Rev, 40(7):4232–4243. doi:10.1039/C0CS00211A

  43. Xu J, Yang X, Wang H et al (2011) Arrays of ZnO/ZnxCd1−xSe nanocables: band gap engineering and photovoltaic applications. Nano Lett 11:4138–4143. doi:10.1021/nl201934k

    Article  Google Scholar 

  44. Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42:3033–3087. doi:10.1039/c2cs35331h

    Article  Google Scholar 

  45. Rivera-González N, Chauhan S, Watson DF (2016) Aminoalkanoic acids as alternatives to mercaptoalkanoic acids for the linker-assisted attachment of quantum dots to TiO2. Langmuir 32:9206–9215. doi:10.1021/acs.langmuir.6b02704

    Article  Google Scholar 

  46. Calzada R, Thompson CM, Westmoreland DE et al (2016) Organic-to-aqueous phase transfer of cadmium chalcogenide quantum dots using a sulfur-free ligand for enhanced photoluminescence and oxidative stability. Chem Mater 28:6716–6723. doi:10.1021/acs.chemmater.6b03106

    Article  Google Scholar 

  47. Salant A, Shalom M, Hod I et al (2010) Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4:5962–5968. doi:10.1021/nn1018208

    Article  Google Scholar 

  48. Martinez-Ferrero E, Mora Sero I, Albero J et al (2010) Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Phys Chem Chem Phys 12:2819–2821. doi:10.1039/b924970b

    Article  Google Scholar 

  49. Pan Z, Zhao K, Wang J et al (2013) Near infrared absorption of CdSexTe1−x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7:5215–5222. doi:10.1021/nn400947e

    Article  Google Scholar 

  50. Penga Z, Liua Y, Wub L et al (2016) Influence of surface states of CuInS2 quantum dots in quantum dots-sensitized photo-electrodes. Appl Surf Sci 388:437–443. doi:10.1016/j.apsusc.2015.12.004

    Article  Google Scholar 

  51. Jara DH, Yoon SJ, Stamplecoskie KG, Kamat PV (2014) Size-Dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem Mater 26:7221–7228. doi:10.1021/cm5040886

    Article  Google Scholar 

  52. Santra PK, Nair PV, Thomas KG, Kamat PV (2013) CuInS2–sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance. J Phys Chem Lett 4:722–729. doi:10.1021/jz400181m

    Article  Google Scholar 

  53. Chang CC, Chen JK, Cp Chen et al (2013) Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach. ACS Appl Mater Interfaces 5:11296–11306. doi:10.1021/am403531q

    Article  Google Scholar 

  54. Kameyama T, Douke Y, Shibakawa H et al (2014) Widely controllable electronic energy structure of ZnSe − AgInSe2 solid solution nanocrystals for quantum-dot-sensitized solar cells. J Phys Chem C 118:29517–29524. doi:10.1021/jp508769f

    Article  Google Scholar 

  55. Leschkies KS, Divakar R, Basu J et al (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett 7:1793–1798. doi:10.1021/nl070430o

    Article  Google Scholar 

  56. Zarazua I, De la Rosa E, Lopez-Luke T et al (2011) Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO2 decorated with Au nanoparticles and P3OT. J Phys Chem C 115:23209–23220. doi:10.1021/jp207744n

    Article  Google Scholar 

  57. Jin H, Choi S, Xing G et al (2015) SnS4 4−, SbS4 3−, and AsS3 3− metal chalcogenide surface ligands: couplings to quantum dots, electron transfers, and all-inorganic multilayered quantum dot sensitized solar cells. J Am Chem Soc 137:13827–13835. doi:10.1021/jacs.5b05787

    Article  Google Scholar 

  58. Meng X, Du J, Zhang H, Zhong X (2015) Optimizing the deposition of CdSe colloidal quantum dots on TiO2 film electrode via capping ligand induced self-assembly approach. RSC Adv 5:86023–86030. doi:10.1039/c5ra17412k

    Article  Google Scholar 

  59. Jung MH, Kang MG (2011) Enhanced photo-conversion efficiency of CdSe–ZnS core–shell quantum dots with Au nanoparticles on TiO2 electrodes. J Mater Chem 21:2694–2700. doi:10.1039/c0jm03431b

    Article  Google Scholar 

  60. Kongkanand A, Tvrdy K, Takechi K et al (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015. doi:10.1021/ja0782706

    Article  Google Scholar 

  61. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. J Phys Chem C 115:13511–13519. doi:10.1021/jp203055d

    Article  Google Scholar 

  62. Chouhan N, Yeh CL, Hu SF et al (2011) Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water. Chem Commun 47:3493–3495. doi:10.1039/c0cc05548d

    Article  Google Scholar 

  63. Chen J, Lei W, Deng WQ (2011) Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Nanoscale 3:674–677. doi:10.1039/c0nr00591f

    Article  Google Scholar 

  64. King LA, Riley DJ (2012) Importance of QD purification procedure on surface absorbance of QDs and performance of QD sensitized photoanodes. J Phys Chem C 116:3349–3355. doi:10.1021/jp210290j

    Article  Google Scholar 

  65. Santra PK, Kamat PV (2013) Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J Am Chem Soc 135:877–885. doi:10.1021/ja310737m

    Article  Google Scholar 

  66. Itzhakov S, Shen H, Buhbut S et al (2013) Type-II quantum-dot-sensitized solar cell spanning the visible and near-infrared spectrum. J Phys Chem C 117:22203–22210. doi:10.1021/jp312190x

    Article  Google Scholar 

  67. Hyun BR, Zhong YW, Bartnik AC et al (2008) Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2:2206–2212. doi:10.1021/nn800336b

    Article  Google Scholar 

  68. Krüger S, Hickey SG, Tscharntke S, Eychmüller A (2011) Study of the attachment of linker molecules and their effects on the charge carrier transfer at lead sulfide nanoparticle sensitized ZnO substrates. J Phys Chem C 115:13047–13055. doi:10.1021/jp200935x

    Article  Google Scholar 

  69. Li TL, Lee YL, Teng H (2012) High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy Environ Sci 5:5315–5324. doi:10.1039/c1ee02253a

    Article  Google Scholar 

  70. Cheng KC, Law WC, Yong KT et al (2011) Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications. Chem Phys Lett 515:254–257. doi:10.1016/j.cplett.2011.09.027

    Article  Google Scholar 

  71. Pan Z, Mora-Seró I, Shen Q et al (2014) High-efficiency “Green” quantum dot solar cells. J Am Chem Soc 136:9203–9210. doi:10.1021/ja504310w

    Article  Google Scholar 

  72. Xu A, Tao H, Chen S et al (2015) A novel approach to utilize thiol reduced graphene oxide as linker molecule for Cu2ZnSnS4 sensitized solar cell. Inter J Hydrogen Energy 40:15933–15939. doi:10.1016/j.ijhydene.2015.09.068

    Article  Google Scholar 

  73. Wang H, Luan C, Xu X et al (2012) In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous TiO2 films for quantum dot sensitized solar cells. J Phys Chem C 116:484–489. doi:10.1021/jp209987q

    Article  Google Scholar 

  74. King LA, Parkinson BA (2016) Photosensitization of ZnO crystals with iodide-capped PbSe quantum dots. J Phys Chem Lett 7:2844–2848. doi:10.1021/acs.jpclett.6b01133

    Article  Google Scholar 

  75. Raevskaya AE, Stroyuk OL, Panasiuk YV et al (2016) A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano-Struct Nano-Objects. doi:10.1016/j.nanoso.2015.12.001

    Google Scholar 

  76. Raevskaya AE, Alontseva VV, Kozitskiy AV et al (2016) Photoelectrochemical properties of titania nanoheterostructures with low-dimensional cadmium selenide particles. Ther Exp Chem 52:152–162

    Article  Google Scholar 

  77. Coughlin KM, Nevins JS, Watson DF (2013) Aqueous-phase linker-assisted attachment of cysteinate(2−)-capped CdSe quantum dots to TiO2 for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5:8649–8654. doi:10.1021/am402219e

    Article  Google Scholar 

  78. Zhou C, Zhou L, Xu J, Gan Y (2016) Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods. J Solid State Electrochem 20:533–540. doi:10.1007/s10008-015-3075-5

    Article  Google Scholar 

  79. Sarkar S, Makhal A, Lakshman K et al (2012) Dual-sensitization via electron and energy harvesting in CdTe quantum dots decorated ZnO nanorod-based dye-sensitized solar cells. J Phys Chem C 116:14248–14256. doi:10.1021/jp3046593

    Article  Google Scholar 

  80. Lan GY, Yang Z, Lin YW et al (2009) A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells. J Mater Chem 19:2349–2355. doi:10.1039/b817000b

    Article  Google Scholar 

  81. Nehme AS, Haydous F, Halaoui L (2016) Amplification in light energy conversion at Q-CdTe sensitized TiO2 photonic crystal, photoelectrochemical stability in Se2− electrolyte, and size-dependent type II Q-CdTe/CdSe formation. J Phys Chem C 120:4766–4778. doi:10.1021/acs.jpcc.5b11478

    Article  Google Scholar 

  82. Hu X, Zhang Q, Huang X et al (2011) Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J Mater Chem 21:15903–15905. doi:10.1039/c1jm12629f

    Article  Google Scholar 

  83. Chang JY, Li CH, Chiang YH et al (2016) Toward the facile and ecofriendly fabrication of quantum dot-sensitized solar cells via thiol coadsorbent assistance. ACS Appl Mater Interfaces 8:18878–18890. doi:10.1021/acsami.6b05411

    Article  Google Scholar 

  84. Raevskaya AE, Rosovik OP, Kozytskiy AV et al (2016) Non-Stoichiometric Cu-In-S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Adv 6:100145–100157. doi:10.1039/C6RA18313A

    Article  Google Scholar 

  85. Yu XY, Lei BX, Kuang DB, Cy Su (2011) Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chem Sci 2:1396–1400. doi:10.1039/c1sc00144b

    Article  Google Scholar 

  86. Song X, Wang M, Deng J et al (2013) One-step preparation and assembly of aqueous colloidal CdSxSe1−x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5:5139–5148. doi:10.1021/am4009924

    Article  Google Scholar 

  87. Nakamura R, Makuta S, Tachibana Y (2015) Electron injection dynamics at the SILAR deposited CdS quantum dot/TiO2 interface. J Phys Chem C 119:20357–20362. doi:10.1021/acs.jpcc.5b06900

    Article  Google Scholar 

  88. Lee YS, Gopi CV, Venkata-Haritha M, Kim HJ (2016) Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure. Dalton Trans 45:12914–12923. doi:10.1039/c6dt02531e

    Article  Google Scholar 

  89. Esparza D, Zarazúa I, López-Luke T et al (2015) Photovoltaic properties of Bi2S3 and CdS quantum dot sensitized TiO2 solar cells. Electrochim Acta 180:486–492. doi:10.1016/j.electacta.2015.08.102

    Article  Google Scholar 

  90. Hossain MA, Jennings JR, Shen C et al (2012) CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J Mater Chem 22:16235–16242. doi:10.1039/c2jm33211f

    Article  Google Scholar 

  91. Malashchonak MV, Mazanik AV, Korolik OV et al (2015) Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J Nanotechnol 6:2252–2262. doi:10.3762/bjnano.6.231

    Article  Google Scholar 

  92. Wang X, Zheng J, Sui X et al (2013) CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays. Dalton Trans 42:14726–14732. doi:10.1039/C3DT51266E

    Article  Google Scholar 

  93. You T, Jiang L, Han KL, Deng WQ (2013) Improving the performance of quantum dot-sensitized solar cells by using TiO2 nanosheets with exposed highly reactive facets. Nanotechnology 24:245401

    Article  Google Scholar 

  94. Tak Y, Hong SJ, Leeb JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19:5945–5951. doi:10.1039/b904993b

    Article  Google Scholar 

  95. Hwang I, Yong K (2013) Environmentally benign and efficient Ag2S-ZnO nanowires as photoanodes for solar cells: comparison with CdS-ZnO nanowires. ChemPhysChem 14:364–368. doi:10.1002/cphc.201200876

    Article  Google Scholar 

  96. Emin S, Fanetti M, Abdi FF et al (2013) Photoelectrochemical properties of cadmium chalcogenide-sensitized textured porous zinc oxide plate electrodes. ACS Appl Mater Interfaces 5:1113–1121. doi:10.1021/am3027986

    Article  Google Scholar 

  97. Rabinovich E, Hodes G (2013) Effective bandgap lowering of CdS deposited by successive ionic layer adsorption and reaction. J Phys Chem C 117:1611–1620. doi:10.1021/jp3105453

    Article  Google Scholar 

  98. Malashchonak M, Streltsov EA, Mazanik A et al (2015) Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films 589:145–152. doi:10.1016/j.tsf.2015.04.057

    Article  Google Scholar 

  99. Huang PC, Yang WC, Lee MW (2013) AgBiS2 semiconductor-sensitized solar cells. J Phys Chem C 117:18308–18314. doi:10.1021/jp4046337

    Article  Google Scholar 

  100. Wan Y, Han M, Yu L et al (2015) Fabrication and photoelectrochemical properties of TiO2/CuInS2/Bi2S3 core/shell/shell nanorods electrodes. RSC Adv 5:78902–78909. doi:10.1039/c5ra14548a

    Article  Google Scholar 

  101. Ho YR, Lee MW (2013) AgSbS2 semiconductor-sensitized solar cells. Electrochem Commun 26:48–51. doi:10.1016/j.elecom.2012.10.003

    Article  Google Scholar 

  102. Liu Z, Huang J, Han J et al (2016) CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. Phys Chem Chem Phys 18:16615–16620. doi:10.1039/c6cp01688j

    Article  Google Scholar 

  103. Braga A, Gimenez S, Concina I et al (2011) Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. J Phys Chem Lett 2:454–460. doi:10.1021/jz2000112

    Article  Google Scholar 

  104. Kim J, Choi H, Nahm C et al (2013) Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1−xS interlayer. Appl Phys Lett 102:183901

    Article  Google Scholar 

  105. Tubtimtae A, Wu KL, Tung HY et al (2010) Ag2S quantum dot-sensitized solar cells. Electrochem Commun 12:1158–1160. doi:10.1016/j.elecom.2010.06.006

    Article  Google Scholar 

  106. Chen C, Xie Y, Ali G et al (2011) Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Res Lett 6:462. doi:10.1186/1556-276X-6-462

    Article  Google Scholar 

  107. Chang JY, Lin JM, Su LF, Chang CF (2013) Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. ACS Appl Mater Interfaces 5:8740–8752. doi:10.1021/am402547e

    Article  Google Scholar 

  108. Lee JW, Son DY, Ahn TK et al (2012) Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 3:1050. doi:10.1038/srep01050

    Article  Google Scholar 

  109. Kozitskiy AV, Stroyuk OL, Kuchmiy SY et al (2013) Morphology, optical, and photoelectrochemical properties of electrodeposited nanocrystalline ZnO films sensitized with CdxZn1−xS nanoparticles. J Mater Sci 48:7764–7773. doi:10.1007/s10853-013-7598-9

    Article  Google Scholar 

  110. Lee JH, Song WC, Yi JS et al (2003) Growth and properties of the Cd1−xZnxS thin films for solar cell applications. Thin Solid Films 431–432:349–353. doi:10.1016/S0040-6090(03)00526-1

    Article  Google Scholar 

  111. Antoniadou M, Kondarides DI, Dionysiou DD, Lianos P (2012) Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells. J Phys Chem C 116:16901–16909. doi:10.1021/jp305098m

    Article  Google Scholar 

  112. Henglein A (1984) Catalysis of photochemical reactions by colloidal semiconductors. Pure Appl Chem 56:1215–1224. doi:10.1351/pac198456091215

    Article  Google Scholar 

  113. Zeug N, Bücheler J, Kisch H (1985) Catalytic formation of hydrogen and carbon-carbon bonds on illuminated zinc sulfide generated from zinc dithiolenes. J Am Chem Soc 107:1459–1465. doi:10.1021/ja00292a001

    Article  Google Scholar 

  114. Sadhu S, Patra A (2012) Lattice strain controls the carrier relaxation dynamics in CdxZn1−xS alloy quantum dots. J Phys Chem C 116:15167–15171. doi:10.1021/jp304901w

    Article  Google Scholar 

  115. Sun XW, Huang JZ, Wang JX, Xu Z (2008) A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett 8:1219–1223. doi:10.1021/nl080340z

    Article  Google Scholar 

  116. Zewdu T, Clifford JN, Hernandez JP, Palomares E (2011) Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells. Energy Environ Sci 4:4633–4638. doi:10.1039/c1ee02088a

    Article  Google Scholar 

  117. Guijarro N, Lana-Villarreal T, Lutz T et al (2012) Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercaptophenol improves charge separation. J Phys Chem Lett 3:3367–3372. doi:10.1021/jz301528a

    Article  Google Scholar 

  118. Srathongluan P, Kuhamaneechot R, Sukthao P et al (2016) Photovoltaic performances of Cu2−xTe sensitizer based on undoped and In3+-doped TiO2 photoelectrodes and assembled counter electrodes. J Colloid Interface Sci 463:222–228. doi:10.1016/j.jcis.2015.10.052

    Article  Google Scholar 

  119. Bu Y, Chen Z, Li W, Yu J (2013) High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array. ACS Appl Mater Interfaces 5:5097–5104. doi:10.1021/am400964c

    Article  Google Scholar 

  120. Yao CZ, Wei BH, Meng LX et al (2012) Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide. J Power Sources 207:222–228. doi:10.1016/j.jpowsour.2012.01.154

    Article  Google Scholar 

  121. Qi X, She G, Liu Y et al (2012) Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. Chem Commun 48:242–244. doi:10.1039/c1cc15674h

    Article  Google Scholar 

  122. Yu XY, Liao JY, Qiu KQ et al (2011) Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano 5:9494–9500. doi:10.1021/nn203375g

    Article  Google Scholar 

  123. Ai G, Sun W, Gao X et al (2011) Hybrid CdSe/TiO2 nanowire photoelectrodes: fabrication and photoelectric performance. J Mater Chem 21:8749–8755. doi:10.1039/C0JM03867A

    Article  Google Scholar 

  124. Wang X, Zhu H, Xu Y et al (2010) Aligned ZnO/CdTe coreshell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano 4:3302–3308. doi:10.1021/nn1001547

    Article  Google Scholar 

  125. Tang Y, Wang P, Yun JH et al (2015) Frequency-regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. J Mater Chem A 3:15876–15881. doi:10.1039/c5ta03255e

    Article  Google Scholar 

  126. Zainun AR, Tomoya S, Noor UM et al (2012) New approach for generating Cu2O/TiO2 composite films for solar cell applications. Mater Lett 66:254–256. doi:10.1016/j.matlet.2011.08.032

    Article  Google Scholar 

  127. Wei H, Gong H, Wang Y et al (2011) Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties. CrystEngComm 13:6065–6070. doi:10.1039/c1ce05540b

    Article  Google Scholar 

  128. Suriyawong N, Aragaw B, Shi JB, Lee MW (2016) Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells. J Colloid Interface Sci 473(2016):60–65. doi:10.1016/j.jcis.2016.03.062

    Article  Google Scholar 

  129. Wang H, Miyauchi M, Ishikawa Y et al (2011) Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J Am Chem Soc 133:19102–19109. doi:10.1021/ja2049463

    Article  Google Scholar 

  130. Tian J, Zhang Q, Uchaker E et al (2013) Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J Mater Chem A 1:6770–6775. doi:10.1039/c3ta11056g

    Article  Google Scholar 

  131. Lin KH, Chuang CY, Lee YY et al (2012) Charge transfer in the heterointerfaces of CdS/CdSe cosensitized TiO2 photoelectrode. J Phys Chem C 116:1550–1555. doi:10.1021/jp209353j

    Article  Google Scholar 

  132. Shalom M, Buhbut S, Tirosh S, Zaban A (2012) Design rules for high-efficiency quantum-dot-sensitized solar cells: a multilayer approach. J Phys Chem Lett 3:2436–2441. doi:10.1021/jz3010078

    Article  Google Scholar 

  133. Ho W, Yu JC, Lin J et al (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869. doi:10.1021/la049838g

    Article  Google Scholar 

  134. Kanda S, Akita T, Fujishima M, Tada H (2011) Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism. J Colloid Interface Sci 354:607–610. doi:10.1016/j.jcis.2010.11.007

    Article  Google Scholar 

  135. Shvalagin VV, Stroyuk OL, Kuchmiy SY (2007) Photocatalytic formation of porous CdS/ZnO nanospheres and CdS nanotubes. Theor Exp Chem 43:229–234. doi:10.1007/s11237-007-0026-y

    Article  Google Scholar 

  136. Stroyuk OL, Shvalagin VV, Kotenko TE et al (2010) Photochemical reduction of sulfur in ethanol in the presence of ZnO nanoparticles. Theor Exp Chem 46:218–224. doi:10.1007/s11237-010-9143-0

    Article  Google Scholar 

  137. Ma B, Wang L, Dong H et al (2011) Photocatalysis of PbS quantum dots in a quantum dot-sensitized solar cell: photovoltaic performance and characteristics. Phys Chem Chem Phys 13:2656–2658. doi:10.1039/C0CP02415E

    Article  Google Scholar 

  138. Zhukowskiy MA, Stroyuk OL, Shvalagin VV et al (2009) Photocatalytic growth of CdS, PbS, and CuxS nanoparticles on the nanocrystalline TiO2 films. J Photochem Photobiol A: Chem 203:137–144. doi:10.1016/j.jphotochem.2009.01.007

    Article  Google Scholar 

  139. Jin-nouchi Y, Akita T, Tada H (2010) Ultrafast photodeposition of size-controlled PbS quantum dots on TiO2. ChemPhysChem 11:2349–2352. doi:10.1002/cphc.201000229

    Article  Google Scholar 

  140. Fujii M, Nagasuna K, Fujishima M et al (2009) Photodeposition of CdS quantum dots on TiO2: preparation, characterization, and reaction mechanism. J Phys Chem C 113:16711–16716. doi:10.1021/jp9056626

    Article  Google Scholar 

  141. Jin-nouchi Y, Naya SI, Tada H (2010) Quantum-dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J Phys Chem C 114:16837–16842. doi:10.1021/jp1062226

    Article  Google Scholar 

  142. Fujishima M, Nakabayashi Y, Takayama K et al (2016) High coverage formation of CdS quantum dots on TiO2 by the photocatalytic growth of preformed seeds. J Phys Chem C 120:17365–17371. doi:10.1021/acs.jpcc.6b04091

    Article  Google Scholar 

  143. Nagasuna K, Akita T, Fujishima M, Tada H (2011) Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight. Langmuir 27:7294–7300. doi:10.1021/la200587s

    Article  Google Scholar 

  144. Hu H, Ding J, Zhang S et al (2013) Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett 8:10. doi:10.1186/1556-276X-8-10

    Article  Google Scholar 

  145. Tada H, Mitsui T, Kiyonaga T et al (2006) All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater 5:782–786. doi:10.1038/nmat1734

    Article  Google Scholar 

  146. Stroyuk OL, Shvalagin VV, Raevskaya AE et al (2008) Photochemical formation of semiconducting nanostructures. Theor Exp Chem 44:205–231. doi:10.1007/s11237-008-9037-6

    Article  Google Scholar 

  147. Kozytskiy AV, Stroyuk OL, Kuchmiy SY et al (2013) Effect of the method of preparation of ZnO/CdS and TiO2/CdS film nanoheterostructures on their photoelectrochemical properties. Theor Exp Chem 49:165–171. doi:10.1007/s11237-013-9310-1

    Article  Google Scholar 

  148. Kozitskiy AV, Stroyuk OL, Kuchmiy SY (2015) Photoelectrochemical properties of a solar cell based on FTO/ZnO/CdS (photoanode) and FTO/ZnO/CuxS (counter-electrode) heterostructures. Theor Exp Chem 51:203–209. doi:10.1007/s11237-015-9417-7

    Article  Google Scholar 

  149. Stroyuk OL, Kuchmiy SY, Zhukovskii MA et al (2009) Effect of the method of production of TiO2/CdS film nanoheterostructures on the effectiveness of photoinduced charge separation. Theor Exp Chem 45:302–307. doi:10.1007/s11237-009-9097-2

    Article  Google Scholar 

  150. Kozytskiy AV, Stroyuk OL, Skoryk MA et al (2015) Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures. J Photochem Photobiol A: Chem 303:8–16. doi:10.1016/j.jphotochem.2015.02.005

    Article  Google Scholar 

  151. Kozytskiy AV, Stroyuk OL, Kuchmiy SY (2013) Inorganic photoelectrochemical solar cells based on nanocrystalline ZnO/ZnSe and ZnO/CuSe heterostructures. Catal Today 230:227–233. doi:10.1016/j.cattod.2013.09.043

    Article  Google Scholar 

  152. Zhou SX, Wang YG, Han W, Wang N (2008) I−V characteristics of metal−oxide−ZnSe nanowire structure. J Phys Chem C 112:18644–18650. doi:10.1021/jp8068046

    Article  Google Scholar 

  153. Yang L, Xie R, Liu L et al (2011) Synthesis and characterization of ZnSe nanocrystals by W/O reverse microemulsion method: the effect of cosurfactant. J Phys Chem C 115:19507–19512. doi:10.1021/jp204798y

    Article  Google Scholar 

  154. Xu J, Yang X, Yang QD et al (2012) Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage. J Mater Chem 22:13374–13379. doi:10.1039/c2jm31970e

    Article  Google Scholar 

  155. Lu Z, Xu J, Xie X et al (2012) CdS/CdSe double-sensitized ZnO nanocable arrays synthesized by chemical solution method and their photovoltaic applications. J Phys Chem C 116:2656–2661. doi:10.1021/jp208254z

    Article  Google Scholar 

  156. Akram MA, Javed S, Islam M et al (2016) Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells. Sol Energy Mater Sol Cells 146:121–128. doi:10.1016/j.solmat.2015.11.034

    Article  Google Scholar 

  157. Han J, Liu Z, Guo K et al (2015) AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Appl Catal B 179:61–68. doi:10.1016/j.apcatb.2015.05.008

    Article  Google Scholar 

  158. Han J, Liu Z, Guo K et al (2014) High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells. ACS Appl Mater Interfaces 6:17119–17125. doi:10.1021/am5047813

    Article  Google Scholar 

  159. Duan J, Zhang H, Tang Q et al (2015) Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J Mater Chem A 3:17497–17510. doi:10.1039/C5TA03280F

    Article  Google Scholar 

  160. Pietryga JM, Park YS, Lim J et al (2016) Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev 116:10513–10622. doi:10.1021/acs.chemrev.6b00169

    Article  Google Scholar 

  161. Sharma D, Jha R, Kumar S (2016) Quantum dot sensitized solar cells: recent advances and future perspectives in photoanode. Sol Energy Mater Sol Cells 155:294–322. doi:10.1016/j.solmat.2016.05.062

    Article  Google Scholar 

  162. Thomas SR, Chen CW, Date M et al (2016) Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Adv 6:60643–60656. doi:10.1039/C6RA05502H

    Article  Google Scholar 

  163. Manser JS, Saidaminov MI, Christians JA et al (2016) Making and breaking of lead halide perovskites. Acc Chem Res 49:330–338. doi:10.1021/acs.accounts.5b00455

    Article  Google Scholar 

  164. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275. doi:10.1016/j.solmat.2015.12.025

    Article  Google Scholar 

  165. Pedesseau L, Sapori D, Traore B et al (2016) Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10:9776–9786. doi:10.1021/acsnano.6b05944

    Article  Google Scholar 

  166. Colella S, Mazzeo M, Rizzo A et al (2016) The bright side of perovskites. J Phys Chem Lett 7:4322–4334. doi:10.1021/acs.jpclett.6b01799

    Article  Google Scholar 

  167. Roose B, Ummadisingu A, Correa-Baena JP, Saliba M, Hagfeldt A, Grätzel M, Steiner U, Abate A (2017) Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy 39:24–29. doi:10.1016/j.nanoen.2017.06.037

    Article  Google Scholar 

  168. Correa-Baena JP, Tress W, Domanski K, Anaraki EH, Turren-Cruz SH, Roose B, Boix PP, Grätzel M, Saliba M, Abate A (2017) Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ Sci 10:1207–1212. doi:10.1039/C7EE00421D

    Article  Google Scholar 

  169. Bi D, Yi C, Luo J, Decoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M (2016) Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy 1:16142. doi:10.1038/nenergy.2016.142

    Article  Google Scholar 

  170. Divitini G, Cacovich S, Matteocci F, Cina L, Di Carlo A, Ducati C (2016) In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1:15012. doi:10.1038/nenergy.2015.12

    Article  Google Scholar 

  171. Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cina L, Pellegrini V, Di Carlo A, Bonaccorso F (2016) Few-Layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv Energy Mater 6:1600920. doi:10.1002/aenm.201600920

    Article  Google Scholar 

  172. Reiss P, Carriere M, Lincheneau C et al (2016) Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem Rev 116:10731–10819. doi:10.1021/acs.chemrev.6b00116

    Article  Google Scholar 

  173. Aldakov D, Lefrançois A, Reiss P (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 1:3756–3776. doi:10.1039/C3TC30273C

    Article  Google Scholar 

  174. Sato K, Ono K, Izuishi T et al (2016) The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. Chem Phys 478:159–163. doi:10.1016/j.chemphys.2016.03.014

    Article  Google Scholar 

  175. Kim JY, Yang J, Yu JH et al (2015) Highly Efficient Copper indium selenide quantum dot solar cells: suppression of carrier recombination by controlled Zns overlayers. ACS Nano 9:11286–11295. doi:10.1021/acsnano.5b04917

    Article  Google Scholar 

  176. Dong J, Zhu Y, Jia S, Zhu Z (2016) Blocking the back reaction in quantum dot sensitized solar cells via surface modification with organic molecules. RSC Adv 6:14224–14228. doi:10.1039/c5ra26168f

    Article  Google Scholar 

  177. Huang F, Zhang Q, Xu B et al (2016) A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells. J Mater Chem A 4:14773–14780. doi:10.1039/c6ta01590e

    Article  Google Scholar 

  178. de la Fuente MS, Sánchez RS, González-Pedro V et al (2013) Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J Phys Chem Lett 4:1519–1525. doi:10.1021/jz400626r

    Article  Google Scholar 

  179. Lan X, Voznyy O, García Pelayo, de Arquer F et al (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634. doi:10.1021/acs.nanolett.6b01957

    Article  Google Scholar 

  180. Lan X, Voznyy O, Kiani A et al (2016) Passivation using molecular halides increases quantum dot solar cell performance. Adv Mater 28:299–304. doi:10.1002/adma.201503657

    Article  Google Scholar 

  181. Zhang X, Johansson EMJ (2017) Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J Mater Chem A 5:303–310. doi:10.1039/c6ta07775g

    Article  Google Scholar 

  182. Hwang JY, Lee SA, Lee YH, Seok SI (2010) Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control. ACS Appl Mater Interfaces 2:1343–1348. doi:10.1021/am900917n

    Article  Google Scholar 

  183. Zhua G, Pana L, Xua T et al (2011) Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells. J Alloys Comp 509:7814–7818. doi:10.1016/j.jallcom.2011.05.043

    Article  Google Scholar 

  184. Chen Z, Wei C, Li S et al (2016) CdS/CdSe Co-sensitized solar cells based on hierarchically structured SnO2/TiO2 hybrid films. CdS/CdSe co-sensitized solar cells based on hierarchically structured SnO2/TiO2 hybrid films. doi:10.1186/s11671-016-1493-7

  185. Kuang PY, Su YZ, Xiao K et al (2015) Double-Shelled CdS- and CdSe-cosensitized ZnO porous nanotube arrays for superior photoelectrocatalytic applications. ACS Appl Mater Interfaces 7:16387–16394. doi:10.1021/acsami.5b03527

    Article  Google Scholar 

  186. Chen C, Ali G, Yoo SH et al (2011) Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. J Mater Chem 21:16430–16435. doi:10.1039/C1JM13616J

    Article  Google Scholar 

  187. Mahadik MA, Shinde PS, Cho M, Jang JS (2015) Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer. J Mater Chem A 3:23597–23606. doi:10.1039/c5ta07454a

    Article  Google Scholar 

  188. Kokal RK, Kumar PN, Deepa M, Srivastavab AK (2015) Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO2/CdS photoanode. J Mater Chem A 3:20715–20726. doi:10.1039/c5ta04393j

    Article  Google Scholar 

  189. Chen Z, Peng W, Zhang K et al (2012) Surface ion transfer growth of ternary CdS1−xSex quantum dots and their electron transport modulation. Nanoscale 4:7690–7697. doi:10.1039/C2NR31703F

    Article  Google Scholar 

  190. Li H, Cheng C, Li X et al (2012) Composition-graded ZnxCd1−xSe@ZnO core − shell nanowire array electrodes for photoelectrochemical hydrogen generation. J Phys Chem C 116:3802–3807. doi:10.1021/jp204747w

    Article  Google Scholar 

  191. Baran MP, Korsunskaya NE, Stara TR et al (2016) Graded ZnS/ZnSxO1−x heterostructures produced by oxidative photolysis of zinc sulfide: structure, optical properties and photocatalytic evolution of molecular hydrogen. J Photochem Photobiol A: Chem 329:213–220. doi:10.1016/j.jphotochem.2016.07.003

    Article  Google Scholar 

  192. Wang M, Qin H, Fang Y et al (2015) FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv 5:105324–105328. doi:10.1039/c5ra23281c

    Article  Google Scholar 

  193. Ning Z, Tian H, Yuan C et al (2010) Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chem Commun 47:1536–1538. doi:10.1039/c0cc03401k

    Article  Google Scholar 

  194. Kim J, Yang W, Oh Y et al (2017) Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spincoating method. J Mater Chem A 5:2180–2187. doi:10.1039/c6ta09602f

    Article  Google Scholar 

  195. Torimoto T, Kameyama T, Kuwabata S (2014) Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J Phys Chem Lett 5:336–347. doi:10.1021/jz402378x

    Article  Google Scholar 

  196. Sasamura T, Okazaki K, Kudo A et al (2012) Photosensitization of ZnO rod electrodes with AgInS2 nanoparticles and ZnS-AgInS2 solid solution nanoparticles for solar cell applications. RSC Adv 2:552–559. doi:10.1039/c1ra00423a

    Article  Google Scholar 

  197. Kadlag KP, Patil P, Rao MJ et al (2014) Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals. CrystEngComm 16:3605–3612. doi:10.1039/c3ce42475h

    Article  Google Scholar 

  198. Wang Y, Zhang Q, Li Y, Wang H (2015) Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance. Nanoscale 7:6185–6192. doi:10.1039/c4nr06458e

    Article  Google Scholar 

  199. McDaniel H, Fuke N, Pietryga JM, Klimov VI (2013) Engineered CuInSexS2−x quantum dots for sensitized solar cells. J Phys Chem Lett 4:355–361. doi:10.1021/jz302067r

    Article  Google Scholar 

  200. Guo Y, Yin X, Yang Y, Que W (2016) Construction of ZnO/Cu2SnS3 nanorod array films for enhanced photoelectrochemical and photocatalytic activity. RSC Adv 6:104041–104048. doi:10.1039/c6ra22674d

    Article  Google Scholar 

  201. van Embden J, Latham K, Duffy NW, Tachibana Y (2013) Near-Infrared Absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. J Am Chem Soc 135:11562–11571. doi:10.1021/ja402702x

    Article  Google Scholar 

  202. Mitzi DB, Gunawan O, Todorov TK et al (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells 95:1421–1436. doi:10.1016/j.solmat.2010.11.028

    Article  Google Scholar 

  203. Siebentritt S, Schorr S (2012) Kesterites—a challenging material for solar cells. Prog Photovolt Res Appl 20:512–519. doi:10.1002/pip.2156

    Article  Google Scholar 

  204. Siebentritt S (2013) Why are kesterite solar cells not 20% efficient? Thin Solid Films 535:1–4. doi:10.1016/j.tsf.2012.12.089

    Article  Google Scholar 

  205. Liu X, Feng Y, Cui H et al (2016) The current status and future prospects of kesterite solar cells: a brief review. Prog Photovolt Res Appl 24:879–898. doi:10.1002/pip.2741

    Article  Google Scholar 

  206. Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131:11672–11673. doi:10.1021/ja904981r

    Article  Google Scholar 

  207. Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J Phys Chem Lett 3:1885–1893. doi:10.1021/jz3004602

    Article  Google Scholar 

  208. Lin L, Zhain T, Bando Y, Golberg D (2012) Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy 1:91–106. doi:10.1016/j.nanoen.2011.10.005

    Article  Google Scholar 

  209. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progr Mater Sci 57:724–803. doi:10.1016/j.pmatsci.2011.08.003

    Article  Google Scholar 

  210. Chen J, Li C, Eda G et al (2011) Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem Commun 47:6084–6086. doi:10.1039/c1cc10162e

    Article  Google Scholar 

  211. Zhu Z, Qiu J, Yan K, Yang S (2013) Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture. ACS Appl Mater Interfaces 5:4000–4005. doi:10.1021/am400235g

    Article  Google Scholar 

  212. Sun B, Hao Y, Guo F et al (2012) Fabrication of Poly(3-hexylthiophene)/CdS/ZnO coreshell nanotube array for semiconductor-sensitized solar cell. J Phys Chem C 116:1395–1400. doi:10.1021/jp206067m

    Article  Google Scholar 

  213. Mukherjee B, Smith YR, Subramanian V (2012) CdSe nanocrystal assemblies on anodized TiO2 nanotubes: optical, surface, and photoelectrochemical properties. J Phys Chem C 116:15175–15184. doi:10.1021/jp208879f

    Article  Google Scholar 

  214. Yang K, Xu C, Huang L et al (2011) Hybrid nanostructure heterojunction solar cells fabrica–ted using vertically aligned ZnO nanotubes grown on reduced graphene oxide. Nanotechnology 22:405401

    Article  Google Scholar 

  215. Chen H, Zhu L, Liu H, Li W (2013) ITO porous film-supported metal sulfide counter electrodes for high-performance quantum-dot-sensitized solar cells. J Phys Chem C 117:3739–3746. doi:10.1021/jp309967w

    Article  Google Scholar 

  216. Yang YY, Zhang QX, Wang TZ et al (2013) Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells. Electrochim Acta 88:44–50. doi:10.1016/j.electacta.2012.09.094

    Article  Google Scholar 

  217. Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. overcoming the redox limitations of S2−/S 2−n at the counter electrode. J Phys Chem Lett 2:2453–2460. doi:10.1021/jz201064k

    Article  Google Scholar 

  218. Balis N, Dracopoulos V, Bourikas K, Lianos P (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91:246–252. doi:10.1016/j.electacta.2013.01.004

    Article  Google Scholar 

  219. Lin CY, Teng CY, Li TL et al (2013) Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells. J Mater Chem A 1:1155–1162. doi:10.1039/c2ta00251e

    Article  Google Scholar 

  220. Eskandari M, Ghahary R, Shokric M, Ahmadi V (2016) Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells. RSC Adv 6:51894–51899. doi:10.1039/c6ra11034g

    Article  Google Scholar 

  221. Savariraj AD, Rajendrakumar G, Selvam S et al (2015) Stacked Cu1.8S nanoplatelets as counter electrode for quantum dot-sensitized solar cell. RSC Adv 5:100560–100567. doi:10.1039/c5ra20965j

    Article  Google Scholar 

  222. Guo W, Du Z, Zhao Q et al (2016) Controlled sulfidation approach for copper sulfide − carbon hybrid as an effective counter electrode in quantum-dot-sensitized solar cells. J Phys Chem C 120:16500–16506. doi:10.1021/acs.jpcc.6b05211

    Article  Google Scholar 

  223. Xu J, Yang X, Wong TL, Lee CS (2012) Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells. Nanoscale 4:6537–6542. doi:10.1039/c2nr31724a

    Article  Google Scholar 

  224. Zhang H, Yang C, Du Z et al (2017) Graphene hydrogel-based counter electrode for high efficiency quantum dot-sensitized solar cells. J Mater Chem A 5:1614–1622. doi:10.1039/c6ta08443e

    Article  Google Scholar 

  225. Venkata-Haritha M, Gopi CV, Lee YS, Kim HJ (2016) Phase transformations of novel CuxS nanostructures as highly efficient counter electrodes for stable and reproducible quantum dot-sensitized solar cells. RSC Adv 6:101185–101197. doi:10.1039/c6ra23763k

    Article  Google Scholar 

  226. Yang Z, Chen CY, Liu CW, Chang HT (2010) Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chem Commun 46:5485–5487. doi:10.1039/c0cc00642d

    Article  Google Scholar 

  227. Faber MS, Park K, Cabán-Acevedo M et al (2013) Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. J Phys Chem Lett 4:1843–1849. doi:10.1021/jz400642e

    Article  Google Scholar 

  228. Khalili SS, Dehghani H, Afrooz M (2017) Composite films of metal doped CoS/carbon allotropes: efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells. J Colloid Interface Sci 493:32–41. doi:10.1016/j.jcis.2017.01.005

    Article  Google Scholar 

  229. Gopi C, Venkata-Haritha M, Lee Y, Kim H (2016) ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J Mater Chem A 4:8161–8171. doi:10.1039/c6ta02415g

    Article  Google Scholar 

  230. Tachan Z, Shalom M, Hod I et al (2011) PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J Phys Chem C 115:6162–6166. doi:10.1021/jp112010m

    Article  Google Scholar 

  231. Wang S, Shen T, Bai H et al (2016) Cu3Se2 nanostructure as a counter electrode for high efficiency quantum dot-sensitized solar cells. J Mater Chem C 4:8020–8026. doi:10.1039/c6tc02309f

    Article  Google Scholar 

  232. Wu M, Lin X, Wang Y, Ma T (2015) Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. J Mater Chem A 3:19638–19656. doi:10.1039/c5ta03682h

    Article  Google Scholar 

  233. Kozytskiy AV, Stroyuk OL, Skoryk M, Kuchmiy SY (2015) Photoassisted formation of CuxS-based cathodes for CdS-sensitized solar cells with S2−/S 2−x electrolyte. Photochem Photobiol Sci 14:942–947. doi:10.1039/C4PP00314D

    Article  Google Scholar 

  234. Du Z, Pan Z, Fabregat-Santiago F et al (2016) Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J Phys Chem Lett 7:3103–3111. doi:10.1021/acs.jpclett.6b01356

    Article  Google Scholar 

  235. Jayathilaka K, Kapaklis V, Siripala W, Jayanetti J (2012) Sulfidation of electrodeposited microcrystalline/nano-crystalline cuprous oxide thin films for solar energy applications. Semicond Sci Technol 27:125019

    Article  Google Scholar 

  236. Kozytskiy AV, Stroyuk OL, Breslavskiy AV et al (2013) Nanostructured films of CuxS—counter electrodes for solar cells based on FTO/ZnO/CdS heterostructures and sulfide/poly–sulfide redox couple. Theor Exp Chem 49:213–218. doi:10.1007/s11237-013-9317-7

    Article  Google Scholar 

  237. Cao Y, Xiao Y, Jung JY et al (2013) Highly electrocatalytic Cu2ZnSn(S1−xSex)4 counter electrodes for quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 5:479–484. doi:10.1021/am302522c

    Article  Google Scholar 

  238. Zhang X, Huang X, Yang Y et al (2013) Investigation on new CuInS2/Carbon composite counter electrodes for CdS/CdSe cosensitized solar cells. ACS Appl Mater Interfaces 5:5954–5960. doi:10.1021/am400268j

    Article  Google Scholar 

  239. Stroyuk OL, Kuchmiy SY, Kryukov AI, Pokhodenko VD (2010) Semiconductor catalysis and photocatalysis on the nanoscale. Nova Science Publishers, Inc., New York

    Google Scholar 

  240. Zeng X, Zhang W, Xie Y et al (2013) Low-cost porous Cu2ZnSnSe4 film remarkably superior to noble Pt as counter electrode in quantum dot-sensitized solar cell system. J Power Sources 226:359–362. doi:10.1016/j.jpowsour.2012.11.023

    Article  Google Scholar 

  241. Wang X, Liu H, Shen W (2016) Controllable in situ photo-assisted chemical deposition of CdSe quantum dots on ZnO/CdS nanorod arrays and its photovoltaic application. Nanotechnology 27:085605

    Article  Google Scholar 

  242. Zhang Y, Pei Q, Liang J et al (2015) Mesoporous TiO2-based photoanode sensitized by BiOI and investigation of its photovoltaic behavior. Langmuir 31:10279–10284. doi:10.1021/acs.langmuir.5b02248

    Article  Google Scholar 

  243. Wang R, Shang Y, Kanjanaboos P et al (2016) Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci 9:1130–1143. doi:10.1039/C5EE03887A

    Article  Google Scholar 

  244. Paul GS, Kim JH, Kim MS et al (2012) Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells. ACS Appl Mater Interfaces 4:375–381. doi:10.1021/am201452s

    Article  Google Scholar 

  245. Seol M, Ramasamy E, Lee J, Yong K (2011) Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode. J Phys Chem C 115:22018–22024. doi:10.1021/jp205844r

    Article  Google Scholar 

  246. Du Z, Tong J, Guo W et al (2016) Cuprous sulfide on Ni foam as a counter electrode for flexible quantum dot sensitized solar cells. J Mater Chem A 4:11754–11761. doi:10.1039/c6ta04934f

    Article  Google Scholar 

  247. Kumar PN, Kolay A, Kumar SK et al (2016) Counter electrode impact on quantum dot solar cell efficiencies. ACS Appl Mater Interfaces 8:27688–27700. doi:10.1021/acsami.6b08921

    Article  Google Scholar 

  248. Sudhagar P, Ramasamy E, Cho WH et al (2011) Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochem Commun 13:34–37. doi:10.1016/j.elecom.2010.11.006

    Article  Google Scholar 

  249. Jiao S, Du J, Du Z et al (2017) Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. J Phys Chem Lett 8:559–564. doi:10.1021/acs.jpclett.6b02864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Stroyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stroyuk, O. (2018). Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. In: Solar Light Harvesting with Nanocrystalline Semiconductors. Lecture Notes in Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-68879-4_4

Download citation

Publish with us

Policies and ethics