Skip to main content

Semiconductor-Based Photocatalytic Systems for the Reductive Conversion of CO2 and N2

  • Chapter
  • First Online:
Solar Light Harvesting with Nanocrystalline Semiconductors

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 99))

Abstract

Semiconductor-based photocatalytic systems aimed at the reduction of carbon dioxide and dinitrogen are continuously studied for more than 30 years (Grätzel in Energy resources through photochemistry and catalysis. Academic Press, Inc., New York, 1983). A gradual shift from micro- to nanocrystalline semiconductor photocatalysts, which is, probably, the main trend in modern semiconductor photocatalysis/photoelectrochemistry, allowed to achieve attractively high quantum efficiencies of the CO2 and N2 conversion as well as to apply a potent array of spectral methods for the elucidation of mechanistic aspects of these important photoreactions. A decrease of the photocatalyst crystal size to a few nanometers allows not only to intensify the photocatalytic synthetic reactions but also to engineer the surface and band structure of the nano-photocatalysts to direct the reactions toward desirable products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grätzel M (ed) (1983) Energy resources through photochemistry and catalysis. Academic Press, Inc, New York

    Google Scholar 

  2. Zhang XV, Martin ST, Friend CM et al (2004) Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon (IV) by manganese sulfide. J Am Chem Soc 126:11247–11253. doi:10.1021/ja0476415

    Article  Google Scholar 

  3. Zhang XV, Ellery SP, Friend CM et al (2007) Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J Photochem Photobiol A 185:301–311. doi:10.1016/j.jphotochem.2006.06.025

    Article  Google Scholar 

  4. Chittenden GJ, Schwartz AW (1981) Prebiotic photosynthetic reactions. Biosystems 14:15–32

    Article  Google Scholar 

  5. Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  Google Scholar 

  6. Shiavello M, Sclafani A (ed) (1985) Photoelectrochemistry, photocatalysis and photoreaction. NATO-ASI Series, Reidel, Dordrecht

    Google Scholar 

  7. Shiavello M (ed) (1988) Photocatalysis and environment trends and application. Kluwer

    Google Scholar 

  8. Davies JA, Boucher OL, Edwards JG (1995) The question of artificial photosynthesis of ammonia on heterogeneous catalysts. In: Neckers OC, Volman DH, von Bünou G (eds) Advances in photochemistry. New York, Wiley

    Google Scholar 

  9. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26:4607–4626. doi:10.1002/adma.201400087

    Article  Google Scholar 

  10. Nikokavoura A, Trapalis C (2017) Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl Surf Sci 391:149–174. doi:10.1016/j.apsusc.2016.06.172

    Article  Google Scholar 

  11. Wen F, Li C (2012) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364. doi:10.1021/ar300224u

    Article  Google Scholar 

  12. Kim W, McClure BA, Edri E, Frei H (2016) Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chem Soc Rev 45:3221–3243. doi:10.1039/c6cs00062b

    Article  Google Scholar 

  13. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278. doi:10.1021/nn9015423

    Article  Google Scholar 

  14. Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963. doi:10.1002/adma.201500116

    Article  Google Scholar 

  15. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580. doi:10.1039/c2cs35355e

    Article  Google Scholar 

  16. Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts energy. Environ Sci 9:2177–2196. doi:10.1039/c6ee00383d

    Google Scholar 

  17. Chen Y, Lewis NS, Xiang C (2015) Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2. Energy Environ Sci 8:3663–3674. doi:10.1039/c5ee02908b

    Article  Google Scholar 

  18. Atwater HA (2016) Photonics and light science wish list from COP21 in Paris. ACS Photonics 3:155–157. doi:10.1021/acsphotonics.5b00749

    Article  Google Scholar 

  19. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev. doi:10.1016/j.ccr.2012.04.018

    Google Scholar 

  20. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233. doi:10.1039/c2ee21948d

    Article  Google Scholar 

  21. Sun H, Wang S (2014) Research advances in the synthesis of nanocarbon-based photocatalysts and their applications for photocatalytic conversion of carbon dioxide to hydrocarbon fuels. Energy Fuels 28:22–36. doi:10.1021/ef401426x

    Article  Google Scholar 

  22. Qin S, Xin F, Liu Y et al (2011) Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J Colloid Interface Sci 356:257–261. doi:10.1016/j.jcis.2010.12.034

    Article  Google Scholar 

  23. Kanemoto M, Hosokawa H, Wada Y et al (1996) Role of surface in the photoreduction of carbon dioxide catalysed by colloidal ZnS nanocrystallites in organic solvent. J Chem Soc Faraday Trans 92:2401–2411. doi:10.1039/FT9969202401

    Article  Google Scholar 

  24. Zhou R, Guzman MI (2014) CO2 reduction under periodic illumination of ZnS. J Phys Chem C 118:11649–11656. doi:10.1021/jp4126039

    Article  Google Scholar 

  25. Chen J, Xin F, Qin S, Yin X (2013) Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem Eng J 230:506–512. doi:10.1016/j.cej.2013.06.119

    Article  Google Scholar 

  26. Kočí K, Reli M, Kozák O et al (2011) Influence of reactor geometry on the yield of CO2 photocatalytic reduction. Catal Today 176:212–214. doi:10.1016/j.cattod.2010.12.054

    Article  Google Scholar 

  27. Chaudhary YS, Woolerton TW, Allen CS et al (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun 48:58–60. doi:10.1039/c1cc16107e

    Article  Google Scholar 

  28. Fujiwara H, Hosokawa H, Murakoshi K et al (1997) Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. J Phys Chem B 101:8270–8278

    Article  Google Scholar 

  29. Jiang W, Yin X, Xin F et al (2014) Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbon dioxide. Appl Surf Sci 288:138–142. doi:10.1016/j.apsusc.2013.09.165

    Article  Google Scholar 

  30. Dai W, Xu H, Yu J et al (2015) Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl Surf Sci 356:173–180. doi:10.1016/j.apsusc.2015.08.059

    Article  Google Scholar 

  31. Sasan K, Lin Q, Mao C, Feng P (2016) Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel. Nanoscale 8:10913–10916. doi:10.1039/c6nr02525k

    Article  Google Scholar 

  32. Liu L, Zhao H, Andino JM, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828. doi:10.1021/cs300273q

    Article  Google Scholar 

  33. Dimitrijevic NM, Vijayan BK, Poluektov OG et al (2011) Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc 133:3964–3971. doi:10.1021/ja108791u

    Article  Google Scholar 

  34. Lee D, Kanai Y (2012) Role of four-fold coordinated titanium and quantum confinement in CO2 reduction at titania surface. J Am Chem Soc 134:20266–20269. doi:10.1021/ja309871m

    Article  Google Scholar 

  35. Yu J, Low J, Xiao W et al (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc 136:8839–8842. doi:10.1021/ja5044787

    Article  Google Scholar 

  36. Xie S, Wang Y, Zhang Q et al (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4:3644–3653. doi:10.1021/cs500648p

    Article  Google Scholar 

  37. Tong Y, Chen L, Ning S et al (2017) Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe. Appl Catal B 203:725–730. doi:10.1016/j.apcatb.2016.10.065

    Article  Google Scholar 

  38. Hamdy MS, Amrollahi R, Sinev I et al (2014) Strategies to design efficient silica-supported photocatalysts for reduction of CO2. J Am Chem Soc 136:594–597. doi:10.1021/ja410363v

    Article  Google Scholar 

  39. Liu E, Kang L, Wu F et al (2014) Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 9:61–70. doi:10.1007/s11468-013-9598-7

    Article  Google Scholar 

  40. Tu W, Zhou Y, Li H et al (2015) Au@TiO2 yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 7:14232–14236. doi:10.1039/c5nr02943k

    Article  Google Scholar 

  41. Tan LL, Ong WJ, Chai SP et al (2013) Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8:465. doi:10.1186/1556-276X-8-465

    Article  Google Scholar 

  42. Fu J, Cao S, Yu J et al (2014) Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Trans 43:9158–9165. doi:10.1039/c4dt00181h

    Article  Google Scholar 

  43. Xu Q, Yu J, Zhang J et al (2015) Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem Commun 51:7950–7953. doi:10.1039/c5cc01087j

    Article  Google Scholar 

  44. Fresno F, Jana P, Reñones P et al (2017) CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochem Photobiol Sci 16:17–23. doi:10.1039/c6pp00235h

    Article  Google Scholar 

  45. Li P, Ouyang S, Xi G et al (2012) The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J Phys Chem C 116:7621–7628. doi:10.1021/jp210106b

    Article  Google Scholar 

  46. Chen X, Zhou Y, Liu Q et al (2012) Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377. doi:10.1021/am300661s

    Article  Google Scholar 

  47. Zhou Y, Tian Z, Zhao Z et al (2011) High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces 3:3594–3601. doi:10.1021/am2008147

    Article  Google Scholar 

  48. Yamamoto M, Yoshida T, Yamamoto N et al (2015) Photocatalytic reduction of CO2 with water promoted by Ag clusters in Ag/Ga2O3 photocatalysts. J Mater Chem A 3:16810–16816. doi:10.1039/C5TA04815J

    Article  Google Scholar 

  49. Kawamura S, Puscasu MC, Yoshida Y et al (2015) Tailoring assemblies of plasmonic silver/gold and zinc–gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV-visible light. Appl Catal A 504:238–247. doi:10.1016/j.apcata.2014.12.042

    Article  Google Scholar 

  50. Liu Q, Wu D, Zhou Y et al (2014) Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane. ACS Appl Mater Interfaces 6:2356–2361. doi:10.1021/am404572g

    Article  Google Scholar 

  51. Liu Q, Zhou Y, Kou J et al (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387. doi:10.1021/ja1068596

    Article  Google Scholar 

  52. Kang U, Park H (2017) A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J Mater Chem A 5:2123–2131. doi:10.1039/c6ta09378g

    Article  Google Scholar 

  53. Zhang T, Wang X, Huang X et al (2016) Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO2 to cyclic carbonate. RSC Adv 6:2810–2818. doi:10.1039/c5ra21058e

    Article  Google Scholar 

  54. Zhang L, Wang W, Jiang D et al (2015) Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res 8:821–831. doi:10.1007/s12274-014-0564-2

    Article  Google Scholar 

  55. Peng F, Wang J, Ge G et al (2013) Photochemical reduction of CO2 catalyzed by silicon nanocrystals produced by high energy ball milling. Mater Lett 92:65–67. doi:10.1016/j.matlet.2012.10.059

    Article  Google Scholar 

  56. Lin J, Pan Z, Wang X (2014) Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable Chem Eng 2:353–358. doi:10.1021/sc4004295

    Article  Google Scholar 

  57. Xia P, Zhu B, Yu J et al (2017) Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A 5:3230–3238. doi:10.1039/c6ta08310b

    Article  Google Scholar 

  58. Xu HQ, Hu J, Wang D et al (2015) Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. J Am Chem Soc 137:13440–13443. doi:10.1021/jacs.5b08773

    Article  Google Scholar 

  59. Sun D, Gao Y, Fu J et al (2015) Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chem Commun 51:2645–2648. doi:10.1039/C4CC09797A

    Article  Google Scholar 

  60. Yan S, Ouyang S, Xu H et al (2016) Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J Mater Chem A 4:15126–15133. doi:10.1039/C6TA04620G

    Article  Google Scholar 

  61. Fei H, Sampson MD, Lee Y et al (2015) Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem 54:6821–6828. doi:10.1021/acs.inorgchem.5b00752

    Article  Google Scholar 

  62. Choi KM, Kim D, Rungtaweevoranit B et al (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J Am Chem Soc 139:356–362. doi:10.1021/jacs.6b11027

    Article  Google Scholar 

  63. Qin G, Zhang Y, Ke X et al (2013) Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl Catal B 129:599–605. doi:10.1016/j.apcatb.2012.10.012

    Article  Google Scholar 

  64. Jia Y, Xu Y, Nie R et al (2017) Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO2 photocathode. J Mater Chem A 5:5495–5501. doi:10.1039/c6ta10231j

    Article  Google Scholar 

  65. Sahara G, Kumagai H, Maeda K et al (2016) Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)–Re(I) complex photocatalyst and a CoOx/TaON photoanode. J Am Chem Soc 138:14152–14158. doi:10.1021/jacs.6b09212

    Article  Google Scholar 

  66. Kumagai H, Sahara G, Maeda K, Higaghi M, Abe R, Ishitani O (2017) Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)–Re(I) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chem Sci 8:4242–4249. doi:10.1039/C7SC00940B

    Article  Google Scholar 

  67. Jiang M, Gao Y, Wang Z, Ding Z (2016) Photocatalytic CO2 reduction promoted by a CuCo2O4 cocatalyst with homogeneous and heterogeneous light harvesters. Appl Catal B 198:180–188. doi:10.1016/j.apcatb.2016.05.055

    Article  Google Scholar 

  68. Suzuki TM, Nakamura T, Saeki S et al (2012) Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. J Mater Chem 22:24584–24590. doi:10.1039/c2jm33980c

    Article  Google Scholar 

  69. Qian W, Wei W, Jianfeng C et al (2012) Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions. Colloid Surfaces A 409:118–125. doi:10.1016/j.colsurfa.2012.06.010

    Article  Google Scholar 

  70. Finkelstein-Shapiro D, Petrosko SH, Dimitrijevic NM et al (2013) CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles. J Phys Chem Lett 4:475–479. doi:10.1021/jz3020327

    Article  Google Scholar 

  71. Zhao G, Pang H, Liu G et al (2017) Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl Catal B 200:141–149. doi:10.1016/j.apcatb.2016.06.074

    Article  Google Scholar 

  72. Walsh JJ, Jiang C, Tang J, Cowan AJ (2016) Photochemical CO2 reduction using structurally controlled g-C3N4. Phys Chem Chem Phys 18:24825–24829. doi:10.1039/c6cp04525a

    Article  Google Scholar 

  73. Kuriki R, Ishitani O, Maeda K (2016) Unique solvent effects on visible-light CO2 reduction over ruthenium(II)-complex/carbon nitride hybrid photocatalysts. ACS Appl Mater Interfaces 8:6011–6018. doi:10.1021/acsami.5b11836

    Article  Google Scholar 

  74. Sato S, Arai T, Morikawa T et al (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133:15240–15243. doi:10.1021/ja204881d

    Article  Google Scholar 

  75. Yan Y, Yu Y, Huang S et al (2017) Adjustment and matching of energy band of TiO2-based photocatalysts by metal ions (Pd, Cu, Mn) for photoreduction of CO2 into CH4. J Phys Chem C 121:1089–1098. doi:10.1021/acs.jpcc.6b07180

    Article  Google Scholar 

  76. Tahir M, Amin NS (2013) Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl Catal A 467:483–496. doi:10.1016/j.apcata.2013.07.056

    Article  Google Scholar 

  77. Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B 162:98–109. doi:10.1016/j.apcatb.2014.06.037

    Article  Google Scholar 

  78. Ola O, Maroto-Valer MM (2014) Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts. J Catal 309:300–308. doi:10.1016/j.jcat.2013.10.016

    Article  Google Scholar 

  79. Zhao C, Liu L, Zhang Q et al (2012) Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites. Catal Sci Technol 2:2558–2568. doi:10.1039/c2cy20346d

    Article  Google Scholar 

  80. Yang HC, Lin HY, Chien YS et al (2009) Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal Lett 131:381–387. doi:10.1007/s10562-009-0076-y

    Article  Google Scholar 

  81. Matějová L, Kočíb K, Reli, et al (2014) Preparation, characterization and photocatalytic properties of cerium doped TiO2: on the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Appl Catal B 152–153:172–183. doi:10.1016/j.apcatb.2014.01.015

  82. Wang Y, Xu Y, Wang Y et al (2016) Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O. Catal Commun 74:75–79. doi:10.1016/j.catcom.2015.10.029

    Article  Google Scholar 

  83. Ong WJ, Tan LL, Chai SP et al (2014) Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res 7:1528–1547. doi:10.1007/s12274-014-0514-z

    Article  Google Scholar 

  84. Tan LL, Ong WJ, Chai SP, Mohamed AR (2014) Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chem Commun 50:6923–6926. doi:10.1039/C4CC01304B

    Article  Google Scholar 

  85. Lu D, Zhang M, Zhang Z et al (2014) Self-organized vanadium and nitrogen co-doped titania nanotube arrays with enhanced photocatalytic reduction of CO2 into CH4. Nanoscale Res Lett 9:272. doi:10.1186/1556-276X-9-272

    Article  Google Scholar 

  86. Liu S, Wang J, Yu J (2016) ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance. RSC Adv 6:59998–60006. doi:10.1039/C6RA11264A

    Article  Google Scholar 

  87. Xiong Z, Lei Z, Kuang CC et al (2017) Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: the interaction between Pt and Cu2O cocatalysts. Appl Catal B 202:695–703. doi:10.1016/j.apcatb.2016.10.001

    Article  Google Scholar 

  88. Chang X, Wang T, Zhang P et al (2016) Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem Int Ed 55:8840–8845. doi:10.1002/anie.201602973

    Article  Google Scholar 

  89. Wang Y, Li B, Zhang C et al (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B 130–131:277–284. doi:10.1016/j.apcatb.2012.11.019

    Article  Google Scholar 

  90. Zhao J, Wang Y, Li Y et al (2016) Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. Catal Sci Technol 6:7967–7975. doi:10.1039/C6CY01365A

    Article  Google Scholar 

  91. Jiao J, Wei Y, Zhao Z et al (2014) Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation. Ind Eng Chem Res 53:17345–17354. doi:10.1021/ie503333b

    Article  Google Scholar 

  92. Reli M, Huo P, Šihor M et al (2016) Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J Phys Chem A 120:8564–8573. doi:10.1021/acs.jpca.6b07236

    Article  Google Scholar 

  93. Shi H, Zhang C, Zhou C, Chen G (2015) Conversion of CO2 into renewable fuel over Pt–g-C3N4/KNbO3 composite photocatalyst. RSC Adv 5:93615–93622. doi:10.1039/c5ra16870h

    Article  Google Scholar 

  94. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4:3637–3643. doi:10.1021/cs500848f

    Article  Google Scholar 

  95. Zhang X, Wang L, Du Q et al (2016) Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation. J Colloid Interface Sci 464:89–95. doi:10.1016/j.jcis.2015.11.022

    Article  Google Scholar 

  96. Cao SW, Liu XF, Yuan YP et al (2014) Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B 147:940–946. doi:10.1016/j.apcatb.2013.10.029

    Article  Google Scholar 

  97. Li M, Zhang L, Fan X et al (2017) Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Appl Catal B 201:629–635. doi:10.1016/j.apcatb.2016.09.004

    Article  Google Scholar 

  98. Li K, Peng B, Jin J et al (2017) Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Appl Catal B 203:910–916. doi:10.1016/j.apcatb.2016.11.001

    Article  Google Scholar 

  99. Zou JP, Wu DD, Luo J et al (2016) A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal 6:6861–6867. doi:10.1021/acscatal.6b01729

    Article  Google Scholar 

  100. Yang Z, Wang H, Song W et al (2017) One dimensional SnO2 NRs/Fe2O3 NTs with dual synergistic effects for photoelectrocatalytic reduction CO2 into methanol. J Colloid Interface Sci 486:232–240. doi:10.1016/j.jcis.2016.09.055

    Article  Google Scholar 

  101. Sakimoto KK, Zhang SJ, Yang P (2016) Cysteine–cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic–biological hybrid system. Nano Lett 16:5883–5887. doi:10.1021/acs.nanolett.6b02740

    Article  Google Scholar 

  102. Li X, Liu H, Luo D et al (2012) Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158. doi:10.1016/j.cej.2011.11.029

    Article  Google Scholar 

  103. Wei W, Yang Z, Song W et al (2017) Different CdSeTe structure determined photoelectrocatalytic reduction performance for carbon dioxide. J Colloid Interface Sci 496:327–333. doi:10.1016/j.jcis.2016.11.054

    Article  Google Scholar 

  104. Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53. doi:10.1021/jz9000032

    Article  Google Scholar 

  105. Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B 200:448–457. doi:10.1016/j.apcatb.2016.07.032

    Article  Google Scholar 

  106. Cherkasov N, Ibhadon AO, Fitzpatrick P (2015) A review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Proc 90:24–33. doi:10.1016/j.cep.2015.02.004

    Article  Google Scholar 

  107. Schrautzer GN, Strampach N, Hui LN et al (1983) Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci USA 80:3873–3876

    Article  Google Scholar 

  108. Ma H, Shi Z, Li Q, Liu N (2016) Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment. Appl Surf Sci 379:309–315. doi:10.1016/j.apsusc.2016.04.085

    Article  Google Scholar 

  109. Ma H, Shi Z, Li Q, Li S (2016) Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve-regrowth process. J Phys Chem Sol 99:51–58. doi:10.1016/j.jpcs.2016.08.008

    Article  Google Scholar 

  110. Dong G, Ho W, Wang C (2015) Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J Mater Chem A 3:23435–23441. doi:10.1039/c5ta06540b

    Article  Google Scholar 

  111. Raevskaya AE, Panasiuk YV, Korzhak GV et al (2017) Photocatalytic H2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catal Today 284:229–235. doi:10.1016/j.cattod.2016.12.024

    Article  Google Scholar 

  112. Wu G, Gao Y, Zheng B (2016) Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram Internat 42:6985–6992. doi:10.1016/j.ceramint.2016.01.086

    Article  Google Scholar 

  113. Hu S, Chen X, Li Q et al (2016) Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal Sci Technol 6:5884–5890. doi:10.1039/c6cy00622a

    Article  Google Scholar 

  114. Hu S, Li Y, Li F et al (2016) Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies. ACS Sustainable Chem Eng 4:2269–2278. doi:10.1021/acssuschemeng.5b01742

    Article  Google Scholar 

  115. Zhang Q, Hu S, Fan Z et al (2016) Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans 45:3497–3505. doi:10.1039/c5dt04901f

    Article  Google Scholar 

  116. Cao Y, Hu S, Li F et al (2016) Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv 6:49862–49867. doi:10.1039/c6ra08247e

    Article  Google Scholar 

  117. Banerjee A, Yuhas BD, Margulies EA et al (2015) Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J Am Chem Soc 137:2030–2034. doi:10.1021/ja512491v

    Article  Google Scholar 

  118. Li H, Shang J, Shi J et al (2016) Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8:1986–1993. doi:10.1039/c5nr07380d

    Article  Google Scholar 

  119. Li H, Shang J, Ai Z, Zhang L (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc 137:6393–6399. doi:10.1021/jacs.5b03105

    Article  Google Scholar 

  120. Sun S, An Q, Wang W et al (2017) Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J Mater Chem A 5:201–209. doi:10.1039/c6ta09275f

    Article  Google Scholar 

  121. Taqui Khan MM, Rao NN (1991) Stepwise reduction of coordinated dinitrogen to ammonia via diazinido and hydrazido intermediates on a visible light irradiated Pt /CdS × Ag2S/RuO2 particulate system suspended in an aqueous solution of K[Ru(EDTA-H)Cl]2H2O. J Photochem Photobiol A 56:101–111

    Article  Google Scholar 

  122. Hu S, Zhang W, Bai J et al (2016) Construction of a 2D/2D g-C3N4/rGO hybrid heterojunc–tion catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv 6:25695–25702. doi:10.1039/c5ra28123g

    Article  Google Scholar 

  123. Ogawa T, Kitamura T, Shibuya T, Hoshino K (2004) Characterization and material conditions of conducting polymer/titanium oxide hybrid systems used for dinitrogen fixation under ordinary pressure and temperature. Electrochem Commun 6:55–60. doi:10.1016/j.elecom.2003.10.015

    Article  Google Scholar 

  124. Zhao W, Zhang J, Zhu X et al (2014) Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (1 0 1) facets in the presence of ethanol as scavenger. Appl Catal B 144:468–477. doi:10.1016/j.apcatb.2013.07.047

    Article  Google Scholar 

  125. Hu S, Chen X, Li Q et al (2017) Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis. Appl Catal B 201:58–69. doi:10.1016/j.apcatb.2016.08.002

    Article  Google Scholar 

  126. Hu S, Qu X, Bai J, Li P, Li Q, Wang F, ong L (2017) Effect of Cu(I)–N active sites on the N2 photofixation ability over flowerlike copper-doped g-C3N4 prepared via a novel molten salt-assisted microwave process: the experimental and density functional theory simulation analysis. ACS Sustainable Chem Eng 5:6863–6872. doi:10.1021/acssuschemeng.7b01089

    Article  Google Scholar 

  127. Yue C, Trudeau ML, Antonelli D (2005) Mesoporous tantalum oxide photocatalysts for Schrauzer-type conversion of dinitrogen to ammonia. Canadian J Chem 83:308–314. doi:10.1139/v05-018

    Article  Google Scholar 

  128. Lashgaria M, Zeinalkhania P (2017) Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: a novel hydrogenation strategy and basic understanding of the phenomenon. Appl Catal A 529:91–97. doi:10.1016/j.apcata.2016.10.017

  129. Linnik O, Kisch H (2006) On the mechanism of nitrogen photofixation at nanostructured iron titanate films. Photochem Photobiol Sci 5:938–942. doi:10.1039/b608396j

    Article  Google Scholar 

  130. Tennakone K, Ileperuma OA, Bandara JMS et al (1991) Simultaneous reductive and oxidative photocatalytic nitrogen fixation in hydrous iron(iii) oxide loaded nafion films in aerated water. J Chem Soc Chem Commun 579–580

    Google Scholar 

  131. Ranjit KT, Varadarajan TK, Viswanathan B (1996) Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J Photochem Photobiol, A 96:181–185

    Article  Google Scholar 

  132. Ali M, Zhou F, Chen K et al (2016) Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat Commun 7:11335. doi:10.1038/ncomms11335

    Article  Google Scholar 

  133. Sun S, Li X, Wang W et al (2017) Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl Catal B 200:323–329. doi:10.1016/j.apcatb.2016.07.025

    Article  Google Scholar 

  134. Wang W, Xu D, Cheng B et al (2017) Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. J Mater Chem A 5:5020–5029. doi:10.1039/c6ta11121a

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Stroyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stroyuk, O. (2018). Semiconductor-Based Photocatalytic Systems for the Reductive Conversion of CO2 and N2 . In: Solar Light Harvesting with Nanocrystalline Semiconductors. Lecture Notes in Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-68879-4_3

Download citation

Publish with us

Policies and ethics