Skip to main content

Distance Measures for Portfolio Selection

  • Chapter
  • First Online:

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

The classical Markowitz approach to the portfolio selection problem (PSP) consists of selecting the portfolio that minimises the return variance for a given level of expected return. By solving the problem for different values of this expected return we obtain the Pareto efficient frontier, which is composed of non-dominated portfolios. The final user has to discriminate amongst these points by resorting to an external criterion in order to decide which portfolio to invest in. We propose to define an external portfolio that corresponds to a desired criterion, and to assess its distance from the Markowitz frontier in market allowing for short-sellings or not. We show that this distance is able to give us useful information about out-of-sample performances. The pursued objective is to provide an operational method for discriminating amongst non-dominated portfolios considering the investors’ preferences.

Arne Lokketangen is deceased (10 June 2013).

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    http://mscmga.ms.ai.ac.uk/orlib/Jeb/portfolio.html.

References

  • Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621–643.

    Article  Google Scholar 

  • Benati, S., & Rizzi, R. (2007). A mixed integer linear programming formulation of the optimal mean/value-at-risk portfolio problem. European Journal of Operational Research, 176(1), 423–434.

    Article  Google Scholar 

  • Birattari, M., Yuan, Y., Balaprakash, P., & Stützle, T. (2010). F-Race and iterated F-Race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311–336). Berlin: Springer.

    Chapter  Google Scholar 

  • Black, F. (1972). Capital market equilibrium with restricted borrowing. Journal of Business, 45(3), 444–455.

    Article  Google Scholar 

  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.

    Article  Google Scholar 

  • Corazza, M., Fasano, G., & Gusso, R. (2012). Portfolio selection with an alternative measure of risk: Computational performances of particle swarm optimization and genetic algorithms. In Mathematical and statistical methods for actuarial sciences and finance (pp. 123–130). Milan: Springer.

    Chapter  Google Scholar 

  • Dahl, H., Meeraus, A., & Zenios, S. A. (1993). Some financial optimization models: I risk management. In Financial optimization (pp. 3–36). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • di Tollo, G., & Maringer, D. (2009). Metaheuristics for the index tracking problem. In Metaheuristics in the service industry (pp. 127–154). Berlin: Springer.

    Chapter  Google Scholar 

  • di Tollo, G., & Roli, A. (2008). Metaheuristics for the portfolio selection problem. International Journal of Operations Research, 5(1), 443–458.

    Google Scholar 

  • di Tollo, G., Stützle, T., & Birattari, M. (2014). A metaheuristic multi-criteria optimisation approach to portfolio selection. Journal of Applied Operational Research, 6(4), 222–242.

    Google Scholar 

  • Franks, E. C. (1992). Targeting excess-of-benchmark returns. Journal of Portfolio Management, 18(4), 6–12.

    Article  Google Scholar 

  • Gilli, M., & Këllezi, K. (2002). The threshold accepting heuristic for index tracking. In Financial engineering, e-commerce and supply chain (pp. 1–18). New York: Springer.

    Google Scholar 

  • Gilli, M., Schumann, E., di Tollo, G., & Cabej, G. (2011). Constructing 130/30-portfolios with the omega ratio. Journal of Asset Management, 12(2), 94–108.

    Article  Google Scholar 

  • Jacobs, B., Levy, K. N., & Markowitz, H. (2005). Portfolio optimization with factors, scenarios and realistic short positions. Operations Research, 53(4), 586–599.

    Article  Google Scholar 

  • Jacobs, B., Levy, K. N., & Markowitz, H. (2006). Trimability and fast optimization of long-short portfolios. Financial Analysts Journal, 62(2), 36–46.

    Article  Google Scholar 

  • Jorion, P. (2003). Portfolio optimization with tracking-error constraints. Financial Analysts Journal, 59(5), 70–82.

    Article  Google Scholar 

  • Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387–406.

    Article  Google Scholar 

  • Lobo, M. S., Fazel, M., & Boyd, S. (2000). Portfolio optimization with linear and fixed transaction costs and bounds on risk. Mimeo. Information Systems Laboratory, Stanford University.

    Google Scholar 

  • Lokketangen, A., & Woodruff, D. L. (2005). A distance function to support optimized selection decisions. Decision Support Systems, 39(3), 345–354.

    Article  Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M. G. (2003). LP solvable models for portfolio optimization: A classification and computational comparison. IMA Journal of Management Mathematics, 14(3), 187–220.

    Article  Google Scholar 

  • Mansini, R., & Speranza, M. G. (1999). Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 114, 219–233.

    Article  Google Scholar 

  • Maringer, D. (2008). Constrained index tracking under loss aversion using differential evolution. In Natural computing in computational finance (pp. 7–24). Berlin: Springer.

    Chapter  Google Scholar 

  • Maringer, D., & Oyewumi, O. (2007). Index tracking with constrained portfolios. Intelligent Systems in Accounting, Finance & Management, 15(1–2), 57–71.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Milano, M., & Trick, M. (2004). Constraint and integer programming (pp. 1–31). New York: Springer

    Google Scholar 

  • Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18(4), 13–22.

    Article  Google Scholar 

  • Rudolf, M., Wolter, H. J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85–103.

    Article  Google Scholar 

  • Sharpe, W. F. (1970). Portfolio theory and capital markets. New York: McGraw Hill.

    Google Scholar 

  • Steuer, R. E., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 5–20.

    Google Scholar 

  • Subbu, R., Bonissone, P. P., Eklund, N., Bollapragadaa, S., & Chalermkraivuth, K. (2005). Multiobjective financial portfolio design: A hybrid evolutionary approach. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation (pp. 1722–1729)

    Google Scholar 

  • Toy, W. W., & Zurack, M. A. (1989). Tracking the Euro-Pac index. Journal of Portfolio Management, 15(2), 55–58.

    Article  Google Scholar 

  • Yu, L., Zhang, S., & Zhou, X. (2006). A downside risk analysis based on financial index tracking models. In Stochastic finance (pp. 213–236). Boston, MA: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Andria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Andria, J., di Tollo, G., Lokketangen, A. (2018). Distance Measures for Portfolio Selection. In: Masri, H., Pérez-Gladish, B., Zopounidis, C. (eds) Financial Decision Aid Using Multiple Criteria. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-68876-3_5

Download citation

Publish with us

Policies and ethics