Skip to main content

Management of Fungal Pathogens by Mycorrhiza

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Mycorrhiza is a symbiotic association between a fungus and host plant, it has been reported to be mutually beneficial for both the partners. 90% terrestrial plant species able to colonize by mycorrhizal fungal species ranging from flowering to non-flowering plants, 10% terrestrial plants do not form such type of association. Arbuscular mycorrhizae (AM) are the symbiotic fungi that predominate in the soils and roots of important crop plants for human mankind. The AM is the major type that abundant and form beneficial symbiosis with terrestrial ecosystems and crop production systems. The AM might complete its partial life cycle in host system. The negative-antagonistic interaction of AM with various soil borne plant pathogenic fungi is the explanation for their potential use as bio-control agents. Many researchers have experimentally observed antagonistic effects of AM against some fungal pathogens. This chapter will highlighting on arbuscular mycorrhiza, types of mycorrhiza, the interaction between mycorrhizae and plant pathogens, the role of mycorrhizae in activation of plant defence mechanisms, and effect of some nanoparticles types on mycorrhizae and pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LK, Robson AD (1981) Infectivity and effectiveness of five endomycorrhizal fungi: competition with indigenous fungi in field soils. Aust J Agric Res 32:621–630

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 1:1–10

    Google Scholar 

  • Bagyaraj DJ (2014) Mycorrhizal fungi. Proc Indian Nat Sci Acad 80:415–428

    Google Scholar 

  • Boiffin J, Malézieux E, Picard D (2001) Cropping systems for the future. In: Nosberger J, Geiger HH, Struik PC (eds) Crop science: progress and prospects. CAB International, Oxford, pp 261–279

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant- fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:PMC91693

    Google Scholar 

  • Cardon ZG, Whitbeck JL (2007) The rhizosphere. Elsevier Academic Press, Burlington, MA, p 235

    Google Scholar 

  • Cumming JR, Zawaski C, Desai S, Collart FR (2015) Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr 15(2):464–485. https://doi.org/10.4067/S0718-95162015005000040

    CAS  Google Scholar 

  • Davis RM, Menge JA (1981) Phytophthora parasitica inoculation and intensity of vesicular-arbuscular mycorrhizae in citrus. New Phytol 87:705–715

    Google Scholar 

  • Doré T, Sebillotte M, Meynard JM (1997) A diagnostic method for assessing regional variations in crop yield. Agric Syst 54:169–188

    Google Scholar 

  • Dressier RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge

    Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:107–118

    Google Scholar 

  • Frank AB (1885) Uber die auf wurzelsymbiose beruhende ernärhung gewisser bäume durch unterirdische pilze. Ber Deutsch Bot Gesell 3:128–145

    Google Scholar 

  • Freudenstein JV, Doyle JJ (1994) Plastid DNA, morphological variation, and the phylogenetic species concept: the Corallorhiza maculata (Orchidaceae) complex. Syst Bot 19:273–290

    Google Scholar 

  • Geerinck D (1992) Flored’Afrique Centrale Orchidaceae 2. Jardin Botanique rationale de Beige

    Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005)Mycorrhizosphere: Strategies and Functions. In: Buscot F, Varma A (eds) Microorganisms in Soils: Roles in Genesis and Functions. Springer-Verlag Berlin, Heidelberg 213–252

    Google Scholar 

  • Gutjahr C, Casieri L, Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–837

    PubMed  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, Toronto

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Google Scholar 

  • He XH, Critchley C, Bledsoe CS (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Google Scholar 

  • Jaiti F, Meddich A, Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    CAS  Google Scholar 

  • Jansa J, Smith FA, Sally ES (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    CAS  PubMed  Google Scholar 

  • Lin X, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  PubMed  Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants (a review). Proc Natl Acad Sci USA 77:2113–2118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara Y, Tamura H, Harada T (1995) Growth enhancement and Verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. J Jpn Soc Hortic Sci 64:555–561

    Google Scholar 

  • Meynard JM (1998) La modélisation du fonctionnement de l’agrosystème, base de la mise au point d’itinéraires techniques et de systèmes de culture. In: Biarnès A, Fillonneau C, et Milleville P (eds) La gestion des systèmes de culture: regards d’agronomes. ORSTOM, pp 29–54

    Google Scholar 

  • Meynard JM, Doré T, Habib R (2001) L’évaluation et la conception de systèmes de cultures pour une agriculture durable. CR Acad Agric Fr 87:223–236

    Google Scholar 

  • Mohammadi K (2011) Soil, plant and microbe interactions. Lambert Academic Publishing, Berlin, p 113

    Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) Beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1:310–319

    Google Scholar 

  • Moore D, Robson GD, Trinci APJ (2011) 21st century guidebook to fungi. Cambridge University Press, Cambridge. isbn:9780521186957

    Google Scholar 

  • Morton JB, Benny JD (1990) Revised classification of arbuscular mycorrhizal fungi (zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Muchovej RM (2001) Importance of mycorrhizae for agricultural crops. 1 SS-AGR-170

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    CAS  PubMed  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    CAS  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    CAS  PubMed  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium head blight (scab) in small grain cereals- a review. Plant Pathol 44:207–238

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani AM, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA (2013) Interactions of fungi with other organisms. Plant Biosys. https://doi.org/10.1080/11263504.2012.753136

    Google Scholar 

  • Pirozynski KA, Dalpe Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Plencette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional tradeoffs in arbuscular mycorrhizal fungi. Proc R Soc B 276:4237–4245

    PubMed  PubMed Central  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Price N, Roncadori R, Hussey R (1989) Turgor, solute import and growth in maize roots treated with galactose. New Phytol 31:1095–1103

    Google Scholar 

  • Selosse M-A, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15–20

    CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical cooperation, Eschborn, p 371

    Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f sp. chrysanthemi in an in-vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants e A soil microcosm experiment. Chemosphere 147:88–97

    CAS  PubMed  Google Scholar 

  • White JM (1984) Competition for infection between vesicular-arbuscular mycorrhizal fungi. New Phytol 97:427–435

    Google Scholar 

  • Windels C (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathol 90:17–21

    CAS  Google Scholar 

  • Yang S, Pfister D (2006) Monotropa uniflora plants of eastern Massa-chusetts form mycorrhizae with a diversity of russulacean fungi. Mycologia 98:535–540

    CAS  PubMed  Google Scholar 

  • Yano K, Yamauchi A, Kono Y (1996) Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus. Mycorrhiza 6:409–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, R., Gupta, N., Satti, U., Wang, S., Ahmed, A.I., Varma, A. (2017). Management of Fungal Pathogens by Mycorrhiza. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_9

Download citation

Publish with us

Policies and ethics