Skip to main content

Mycorrhizae: A Sustainable Industry for Plant and Soil Environment

  • Chapter
  • First Online:

Abstract

The rhizosphere is an environment of plant roots in which most of the microbial activities of soil occur. The two vital components of soil rhizosphere are root exudates and soil microbes. Root exudates are the chemical compounds that are secreted by roots and act as a source of food for soil microbes especially for mycorrhizae. These chemical compounds plays significant role in soil microbe and plant interaction. The soil mycorrhizae are important for plant growth development and health. They are the main components that enrich the soil nutrients and maintain the soil health in sustainable manner. Furthermore, they enhance the plant growth regulators, provide defense mechanism to the plants, regulate enzymatic activities, increase rate of photosynthesis and supports in bioremediations, thus acting as eco-facilitator in sustainable agriculture both in terms of production and environmental protection.

This is a preview of subscription content, log in via an institution.

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  PubMed  Google Scholar 

  • Adholeya A, Tiwari P, Singh R (2005) Commercial production of AMF inoculum and its inoculation strategies. In: Declerck S, Verma A (eds) Root-organ culture of mycorrhizal fungi. USA, pp 5–7

    Google Scholar 

  • Ahmad F, Husain FM, Ahmad I (2011) Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: a critical area in PDPR research. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental technology. Springer, New York

    Google Scholar 

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78

    CAS  PubMed  Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Eur J Agric Environ Sci 1:19–26

    Google Scholar 

  • Ali NA, Bernal MP, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176

    Google Scholar 

  • Alizadeh O, Zare M, Nasr AH (2011) Evaluation effect of mycorrhiza inoculation under drought stress condition on grain yield of sorghum (Sorghum bicolor). Adv Environ Biol 5:2361–2364

    Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to Arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    PubMed  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in altered levels of gibberellin-like substances and abscisic acid in the as affected by vesicular arbuscular mycorrhizae. Plant Soil:121–130

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antoun A, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddique ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht

    Google Scholar 

  • Aronsson P, Perttu K (2001) Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. For Chron 77:293–299

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Auge RM, Schekel KA, Wample RL (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol 103:107–116

    Google Scholar 

  • Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of Arbuscular mycorrhizal fungi to the control of soil borne pathogens. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandte K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Switzerland, pp 187–198

    Google Scholar 

  • Bajwa R, Akhtar J, Javaid A (2003) Role of VAM in alleviating allelopathic stress of Parthenium hysterophorus on maize. Mycopath 1:15–30

    Google Scholar 

  • Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D (2009) Expression of the PsMT (A1) gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192

    CAS  PubMed  Google Scholar 

  • Ballesteros-Almanza L, Altamirano-Hernandez J, Peña-Cabriales JJ, Santoyo G, Sanchez-Yañez JM, Valencia-Cantero E, Macias-Rodriguez L, Lopez-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 17:83–92

    Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv Soil Sci 15:1–40

    Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A et al (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of Arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    CAS  PubMed  Google Scholar 

  • Beltrano J, Ronco MG (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Braz J Plant Physiol 20:29–37

    CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Google Scholar 

  • Besmer YL, Koide RT (1999) Effect of mycorrhizal colonization and P on ethylene production by snapdragon (Antirrhinum majus L.) flower. Mycorrhiza 9:161–166

    CAS  Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto and endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 149–175

    Google Scholar 

  • Bhat PR, Kaveriappa KM (2007) Effect of AM fungi on the growth and nutrition uptake in some endemic Myristicaceae members of the Western ghats, India. In: Tiwari M, Sati SC (eds) The mycorrhizae: diversity, ecology and application. Daya Pub. House, Delhi, pp 295–309

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    PubMed  PubMed Central  Google Scholar 

  • Blilov IP, Bueno JA, Ocampo, Garcia-Garrido J (2000) Introduction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725

    Google Scholar 

  • Bois G, Piche Y, Fung MYP, Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149–158

    CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry. Science Publishers, Enfield, NH, pp 229–250

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CAS  Google Scholar 

  • Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67:1117–1126

    CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    CAS  Google Scholar 

  • Chang DCN (1994) What is the potential for management of vesicular-arbuscular mycorrhizae in horticulture? In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, Dordrecht, pp 187–190

    Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    CAS  PubMed  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    CAS  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2012) Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in Medicago: Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes. Front Physiol 3:91. https://doi.org/10.3389/fphys.2012.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants: defence against oxidative stress. Z Naturforsch CA J Biosci 54:730–734

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    CAS  Google Scholar 

  • Daily GC (1997) Introduction: what are ecosystem services? In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 1–10

    Google Scholar 

  • De Smet I (2011) Lateral root initiation: one step at a time. New Phytol 193:867–873

    Google Scholar 

  • De-Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi MMG 445. Basic Biotechnol 3:1–5

    Google Scholar 

  • Dhruva-Kumar JHA, Sharha GD, Mishra RR (1992) Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biol Biochem 24:761–767

    Google Scholar 

  • Di Baccio D, Galla G, Bracci T, Andreucci A, Barcaccia G, Tognetti R, Sebastiani L (2011) Transcriptome analyses of Populus x euramericana clone I-214 leaves exposed to excess zinc. Tree Physiol 31:1293–1308

    PubMed  Google Scholar 

  • Dickie IA, Koide RT, Fayish AC (2001) Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol 151:257–264

    PubMed  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    CAS  PubMed  Google Scholar 

  • Dodd JC (2000) The role of Arbuscular mycorrhizal fungi in natural ecosystems. Outlook Agric 29:55–62

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    CAS  PubMed  Google Scholar 

  • Dugassa GD, von Alten H, Schönbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feber BA, Zasoki RJ, Burau RG, Urio K (1990) Zinc uptake by corn as affected by vesicular arbuscular mycorrhizae. Plant Soil 129:121–130

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  PubMed  Google Scholar 

  • Filion MM, St. Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1975) Superoxide dimutase. Annu Rev Biochem 44:147–159

    CAS  PubMed  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009a) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Dordrecht, pp 1–22

    Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009b) Beneficial role of plant growth promoting bacteria and Arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. J Appl Microbiol 108:236–245

    CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA, Garcia-Romera I (2002) Enzymes in the arbuscular mycorrhizal symbiosis. In: Burns R, Dick R (eds) Enzymes in the environment: activity, ecology and application. Marcel Dekker, New York, pp 125–151

    Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeon pea). J Plant Growth Regul 27:115–124

    CAS  Google Scholar 

  • Gavito ME, Miller MH (1998) Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 199:177–186

    CAS  Google Scholar 

  • Gerdemann JW (1975) Vesicular-arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 575–591

    Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GC (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Graham JH (2000) Assessing cost of arbuscular mycorrhizal symbiosis in agrosystems. In: Podila GK, Donds DD (eds) Current advances in mycorrhizae research. APS Press, St Paul, pp 127–140

    Google Scholar 

  • Graham JH, Egel DS (1988) Phytophthora root rot development on mycorrhizal and phosphorus fertilized on mycorrhizal Citrus under drought stress. New Phytol 105:411–419

    Google Scholar 

  • Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–224

    CAS  Google Scholar 

  • Grant CA, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57

    Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampp R, Mertz A, Schaible R, Schwaigerer M, Nehls U (2000) Distinction of Araucaria angustifolia seeds from different locations in Brazil by a specific DNA sequence. Trees 14:429–434

    Google Scholar 

  • Hanlon MT, Coenen C (2011) Genetic evidence for auxin involvement in Arbuscular mycorrhiza initiation. New Phytol 189:701–709

    PubMed  Google Scholar 

  • Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Karenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ Pollut 157:922–930

    CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    CAS  PubMed  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Huang RS, Smith WK, Yost RE (1985) Influence of vesicular-arbuscular mycorrhizae on growth, water relation and leaf orientation in Leucaena leucocephala (Linn.) De wit. New Phytol 99:229–243

    Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 5:335–347

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    PubMed  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    CAS  Google Scholar 

  • Jentschel K, Thiel D, Rehn F, Ludwig-Muller J (2007) Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiol Plant 129:320–333

    CAS  Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1994) Ecology of vesicular-arbuscular mycorrhiza. In: Prasad AB, Bilgrami RS (eds) Microbes and environments. Narendra Publishing House, Delhi, pp 199–208

    Google Scholar 

  • Johansson J, Paul L, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Microbial Ecol 18:1–13

    Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grasslands demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    CAS  Google Scholar 

  • Karasawa TY, Kasahara M, Takebe (2002) Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous Arbuscular mycorrhizal fungi. Soil Biol Biochem 34:851–857

    CAS  Google Scholar 

  • Kaur M, Mukerji KG (1999) The application of vesicular Arbuscular mycorrhizal fungi in afforestation. In: Singh A, Aneja KR (eds) From ethanomycology to fungal biotechnology. Plenum Press, New York, pp 213–224

    Google Scholar 

  • Kaye JW, Pfleger FL, Stewart EL (1984) Interactions of Glomus fasciculatum and Pythium ultimumon green house grown Poinsettia. Can J Bot 62:1575–1579

    Google Scholar 

  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of Arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569

    CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    CAS  PubMed  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR et al (eds) Soil science: agricultural and environmental prospective. Springer International Publishing, Switzerland, pp 317–332

    Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    CAS  Google Scholar 

  • Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93

    CAS  PubMed  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    CAS  Google Scholar 

  • Kumar DJHA, Shasha GD, Mishra RR (1992) Soil microbial population numbers and enzyme activities in relation to latitude and forest degradation. Soil Biol Biochem 24:761–767

    Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    PubMed  Google Scholar 

  • Lavorel S (2013) Plant functional effects on ecosystem services. J Ecol 101:4–8

    Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    CAS  PubMed  Google Scholar 

  • Lei M, Zhu C, Liu Y et al (2010) Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol 189:1084–1095

    PubMed  Google Scholar 

  • Lendzemo VW (2004) The tripartite interaction between sorghum, Striga hermonthica and Arbuscular mycorrhizal fungi. Ph.D thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    PubMed  Google Scholar 

  • Liu RJ, Chen YL (2007) Mycorrhizology. China Science Press, Beijing, p 447

    Google Scholar 

  • Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Song Z, Wang T, Yu Z (2007) Effects of Arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I (2010) Hormonal and transcriptional profiles highlight common and differential host responses to Arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Expt Bot 61:2589–2601

    Google Scholar 

  • Ludwig-Muller J (2010) Hormonal responses in host plants triggered by Arbuscular mycorrhizal fungi. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer, Dordrecht, pp 169–190

    Google Scholar 

  • Mar Vazquez M, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Google Scholar 

  • Marhavý P, Bielach A, Abas L et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martín-Rodríguez JA, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Muller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by Arbuscular mycorrhiza fungi. New Phytol 190:193–205

    PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2006) An indigenous drought tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Matamoros MA, Loscos J, Dietz K, Aparicio-Tejo PM, Becana M (2010) Function of antioxidant enzymes and metabolites during maturation of pea fruits. J Exp Bot 61:87–97

    CAS  PubMed  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    CAS  PubMed  Google Scholar 

  • McFarland J, Ruess R, Keilland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems 13:177–193

    CAS  Google Scholar 

  • Meddich A, Jaiti F, Bourzik W, Asli AE, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–471

    Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from California oak woodland. Soil Biol Biochem 40:126–134

    CAS  Google Scholar 

  • Mellor RB (1992) Is trehalose asymbiotic determinant in symbiosis between higher plants and microorganisms? Symbiosis 12:113–129

    CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CAS  Google Scholar 

  • Mosse FE (1973) Advance in the study of vesiculararbuscular mycorrhizae. Ann Rev Phytopathol 72:1125–1132

    Google Scholar 

  • Mrnka L, Kuchar M, Cieslarova Z, Matejka P, Szakova J, Tlustos P, Vosatka M (2012) Effects of endo- and ectomycorrhizal fungi on physiological parameters and heavy metals accumulation of two species from the family Salicaceae. Water Air Soil Pollut 223:399–410

    CAS  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Ané JM (2011) Germinating spore exudates from Arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24:260–270

    CAS  PubMed  Google Scholar 

  • Najafi A, Ardakani MR, Rejali F, Sajedi N (2012) Response of winter barley to co-inoculation with Azotobacter and Mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann Biol Res 3:4002–4006

    CAS  Google Scholar 

  • Nicolson TH (1967) Vesicular-arbuscular mycorrhizal: a universal plant symbiosis. Sci Prog (Oxf) 55:561

    Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorous availability: a review. Ann Bot 112:391–408

    CAS  PubMed  Google Scholar 

  • Nunes JLD, de Souza PVD, Marodin GAB, Fachinello JC (2010) Effect of arbuscular mycorrhizal fungi and indole butyric acid interaction on vegetative growth of ‘Aldrighi’ peach rootstock seedlings. Cienc Agrotecnol 34:80–86

    Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Oueslati O (2003) Allelopathy in two durum wheat (Triticum durum L.) varieties. Agric Ecosyst Environ 96:161–163

    Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    CAS  Google Scholar 

  • Parish RW (1968) Studies on senescing tobacco leaves disc with special reference to peroxidase. The effect of cutting and inhibition of nucleic acid and protein synthesis. Planta 82:1–13

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    CAS  PubMed  Google Scholar 

  • Quilambo OA (2000) Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations. Ph.D thesis, University of Groningen, The Netherlands. Van Denderen B.V., Groningen. ISBN:903671284X

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  PubMed  Google Scholar 

  • Ramos-Zapata JA, Orellana R, Allen EB (2006) Establishment of Desmoncus orthacanthos Martius (Arecaceae): effect of inoculation with Arbuscular mycorrhizae. Rev Biol Trop 54:65–72

    PubMed  Google Scholar 

  • Rani P, Aggarwal A, Sharma D (2001) Improvement in biomass yield of Prosopis cineraria through VAM. Rhizobium sp. and Trichoderma harzianum. Adv Plant Sci 14:593–596

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    CAS  PubMed  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 239–256

    Google Scholar 

  • Ruız-Lozano JM, Azcon R, Gomez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    PubMed  PubMed Central  Google Scholar 

  • Ryan MH, Ash JE (1996) Colonisation of wheat in southern New South Wales by vesicular-arbuscular mycorrhizal fungi is significantly reduced by drought. Aust J Exp Agric 36:563–556

    Google Scholar 

  • Safir GR, Nelson CE (1985) VA-mycorrhizas plant and fungal water relations. In: Molina R (ed) Proceedings of 6th North American conference on mycorrhiza, Corvallis, p 471

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21. http://astonjournals.com/lsmr

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Google Scholar 

  • Salamanca CP, Heera MA, Barea JM (1992) Mycorrhizal inoculation of micropropagated woody legumes used in revegetation programmes for desertified Mediterranean ecosystems. Agronomie 12:869–872

    Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    CAS  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    CAS  PubMed  Google Scholar 

  • Sato A, Miura K (2011) Root architecture remodeling induced by phosphate starvation. Plant Signal Behav 6:1122–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk NC (1981) Can mycorrhizae control root diseases? Plant Dis 65:230–234

    Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    CAS  PubMed  Google Scholar 

  • Schellenbaum L, Muller J, Boller T, Wiemken A, Schüepp H (1998) Effects of drought on non – mycorrhizal and mycorrhizal maize: changes in the pools of non – structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol 138:59–66

    CAS  Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and I-214 (P. x euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88

    CAS  Google Scholar 

  • Selvakumar G, Thamizhiniyan P (2011) The effect of the arbuscular mycorrhizal (AM) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Appl Sci J 14:1209–1214

    Google Scholar 

  • Sharda JN, Koide RT (2010) Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi. Botany 88:165–173

    CAS  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I et al (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol 55:879–886

    CAS  PubMed  Google Scholar 

  • Shinde SK, Shinde BP, Patale SW (2013) The alleviation of salt stress by the activity of AM fungi in growth and productivity of onion (Allium cepa l.) plant. Int J Life Sci Pharma Res 3:11–15

    Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997a) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, p 605

    Google Scholar 

  • Smith SE, Read DJ (1997b) Vesicular-arbuscular mycorrhizas. In: Mycorrhizal symbiosis, 2nd edn. Academic Press, London, pp 9–160

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by axternal hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Google Scholar 

  • Sukumar P, Legué V, Vayssières A et al (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919

    CAS  PubMed  Google Scholar 

  • Sylvia, DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stress. In: Lindermann RG, Bethlenflavay GJ (eds) Mycorrhizae in sustainable agriculture, American Society of Agronomy. Special Publication No. 54, Madisn, WI, pp 101–124

    Google Scholar 

  • Symanczik SJ, Blaszkowski J, Chwat G, Boller T, Wiemken A, Al-Yahya’ei MN (2014) Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispora omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycologia 106:243–259

    CAS  PubMed  Google Scholar 

  • Takacs D, Radimszky L, Nemeth T (2005) The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals. Z Naturforsch CA J Biosci 60:357–361

    CAS  Google Scholar 

  • Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M et al (2007) Proteases in plant root symbiosis. Phytochemistry 68:111–121

    CAS  PubMed  Google Scholar 

  • Thewys T, Witters N, Meers E, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: economics of anaerobic digestion of metal contaminated maize in Belgium. Int J Phytorem 12:663–679

    CAS  Google Scholar 

  • Tobar RM, Azcon R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water stressed conditions. New Phytol 126:119–122

    Google Scholar 

  • Todeschini V, Franchin C, Castiglione S, Burlando B, Biondi S, Torrigiani P, Berta G, Lingua G (2007) Responses to copper of two registered poplar clones inoculated or not with Arbuscular mycorrhizal fungi. Caryologia 60:146–155

    Google Scholar 

  • Tognetti R, Cocozza C, Marchetti M (2013) Shaping the multifunctional tree: the use of Salicaceae in environmental restoration. Forest 6:37–47

    Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.) as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35

    CAS  Google Scholar 

  • van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358

    Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    CAS  PubMed  Google Scholar 

  • Vivas A, Azcon R, Biro B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588

    CAS  PubMed  Google Scholar 

  • Wen CL, Chang DCN (1995) Effects of temperature and Glomus sp. on the cut flower quality of micropropagated Gerbera jamesoni. Mem Coll Agric Natl Taiwan Univ 35:75–91

    Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I et al (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    PubMed  PubMed Central  Google Scholar 

  • Willis A, Rodriguesb BF, Harrisa PJC (2013) The ecology of Arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Xia RN (2006) Effect of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    CAS  Google Scholar 

  • Wu QS, Li GH, Zou YN (2011a) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica l. Batsch) seedlings. J Anim Plant Sci 21:746–750

    CAS  Google Scholar 

  • Wu Q, Zou Y, He X (2011b) Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci Hortic 129:294–298

    CAS  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    CAS  Google Scholar 

  • Yadav K, Singh N, Aggarwal A (2011) Influence of arbuscular mycorrhiza (AM) fungi on survival and development of micropropagated Acorus calamus L. during acclimatization. J Agric Technol 7:775–781

    Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33:612–625

    CAS  Google Scholar 

  • Yaseen T, Burni T, Hussain F (2012) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of chickpea (Cicer arietinum) varieties. Int J Agron Plant Prod 3:334–345

    Google Scholar 

  • Zhang HH, Tang M, Chen H, Zheng C, Niu Z (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311

    Google Scholar 

  • Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline–alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778

    Google Scholar 

  • Zhao M, Li M, Liu RJ (2010) Effect of Arbuscular mycorrhizae on microbial population and enzyme activity in explant soil used for watermelon production. Int J Eng Sci Technol 2:17–22

    Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    CAS  PubMed  Google Scholar 

  • Zolfaghari M, Nazeri V, Sefidkon F, Rejali F (2013) Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iran. J Plant Physiol 3:643–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, R.A. et al. (2017). Mycorrhizae: A Sustainable Industry for Plant and Soil Environment. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_25

Download citation

Publish with us

Policies and ethics