Skip to main content

Rhizosphere Mycorrhizae Communities an Input for Organic Agriculture

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Mycorrhizae are an important biotic factor that influences tropical ecological succession and differently affect the woody species belonging to different successional stages. They are key components of the soil microbiota that play an essential role in plant growth, plant protection and soil quality. These fungi are widespread in agriculture systems and are especially relevant for organic farming because they can act as natural biofertilizer and enhance plant yield. The interaction between organic practices and Mycorrhizae populations are limited and inconsistent. Here, we explore the various roles they play in organic farming systems with special emphasis on their contribution to crop productivity. Present proceedings highlights that organic low-input systems have a high potential to maintain the Mycorrhizae, keeping the soil fertile and productive and point the need to incorporate AM technology in organic farming to stop deterioration of agricultural and forest land and other adverse factors. Symbiotic associations between Mycorrhizae and plant roots are widespread in the natural environment and can provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests and disease, improved resistance to drought, tolerance of heavy metals and better soil structure. However, many agricultural practices including use of fertilizers and biocides, tillage, monocultures and the growing of non-mycorrhizal crops are detrimental to Mycorrhizae. As a result, agro-ecosystems are impoverished in Mycorrhizae and may not provide the full range of benefits to the crop without Mycorrhizae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi, Hisamuddin, Akhtar A, Sharf R (2015) Vesicular Arbuscular mycorrhizal (VAM) fungi: a tool for sustainable agriculture. Am J Plant Nutr Fertil Technol 5:40–49

    Google Scholar 

  • Abbott LK (1982) Comparative anatomy of vesicular-arbuscular mycorrhizae formed on subterranean clover. Aust J Bot 30:485–499

    Google Scholar 

  • Abdelaziz RA, Radwansamir MA, Abdel-Kader M, Barakat MA (1996) Biocontrol of faba bean root-rot using VA mycorrhizae and its effect on biological nitrogen fixation. Egypt J Microbiol 31:273–286

    Google Scholar 

  • Abdul Khaliq, Gupta ML, Alam A (2001) Biotechnological approaches for mass production of arbuscular mycorrhizal fungi: current scnerio and future strategies. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Technique in mycorrhizal studies. Kluwer Academic Publishers, The Netherlands, pp 299–312

    Google Scholar 

  • Allen EB, Allen MF (1988) Facilitation of succession by the non-mycotrophic colonizer Salsola kali (Chenopodiaceae) on a harsh site: effects of mycorrhizal fungi. Am J Bot 75:257–267

    Google Scholar 

  • Allen MF, Moor TSJ, Christensen M (1982) Phytohormone change in Bouteloua gracilis infected by vesicular arbuscular mycorrhiza II: altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    CAS  Google Scholar 

  • Ames RN, Ingham ER, Reid CPP (1982) Ultraviolet-induced autofluorescence of arbuscular mycorrhizal root infections: an alternative to clearing and staining methods for assessing infection. Can J Microbiol 28:351–355

    CAS  Google Scholar 

  • Asai T (1944) Uber die Mykorrhizenbildung der leguminosen Pflanzen. Jpn J Bot 13:463–485

    Google Scholar 

  • Auge RM, Duan X, Ebel RC, Stodala AJW (1994) Non-hydraulic signalling of soil drying in mycorrhizal maize. J Planta 193:74–82

    Google Scholar 

  • Azcon AC, Barea JM (1996) Arbuscular mycorrhizae and biological control of soil borne plant pathogens: an over view of the mechanism involved. Mycorrhizae 6:457–464

    Google Scholar 

  • Azcon R, El-Atrach F, Barea JM (1988) Influence of mycorrhiza vs. soluble phosphate on growth, nodulation and N2 fixation (15N) in Alfalfa under different levels of water potential. J Biol Fertil Soils 7:28–31

    Google Scholar 

  • Azcon-Aguilar C, Azcon R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279:325–327

    Google Scholar 

  • Bagyaraj DJ (1989) Mycorrhizae. In: Tropical rain forest ecosystems. Elsevier Science Publishers, Amsterdam, pp 537–546

    Google Scholar 

  • Bagyaraj DJ, Varma V (1995) Interaction between arbuscular fungi and plants: their importance in sustainable agriculture and in arid and semi arid tropics. In: Advances in microbial ecology. Academic Press, London, pp 119–142

    Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 521–559

    Google Scholar 

  • Barea JM, Azcon-Aguilar C, Azcon R (1988) The role of mycorrhiza in improving the establishment and function of the Rhizobium under field conditions. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in mediterranean agriculture. ICARDA and Martinus Nijhoff Dordrecht, Berlin, pp 153–162

    Google Scholar 

  • Barea JM, Azcon R, Azcon AC (1993) Mycorrhiza and crops. In: Tommerup I (ed) Advances in plant pathology, mycorrhiza: a synthesis, vol 9. Academic Press, London, pp 167–189

    Google Scholar 

  • Becard G, Piche Y (1992) Establishment of vesicular arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Norris et al (eds) Methods in microbiology, vol 24. Academic Press, London, pp 89–108

    Google Scholar 

  • Bedini S, Cristani C, Avio L, Sbrana C, Turrini A, Giovannetti M (2008) Influence of organic farming on arbuscular mycorrhizal fungal populations in a Mediterranean agro-ecosystem. In: Proceedings of 16th IFOAM organic world congress, June 16–20, Modena, Italy

    Google Scholar 

  • Bending GD, Turner MK, Rayns FR, Marx MC, Wood M (2004) Microbial and biochemical indicators of soil quality and their potential for differentiating areas under contrasting agricultural management regimes. J Soil Biol Biochem 36:1785–1792

    CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  Google Scholar 

  • Bhat MS, Mahmood I (2000) Role of Glomus mosseae and Paecilomyces lilacinus in the management of root knot nematode on tomato. Arch Phytopathol 33:131–140

    Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Google Scholar 

  • Btehlenfalvay GJ, Schreiner RP, Mihara KL, McDaniel H (1996) Mycorrhizae, biocides and biocontrol. 2. Mycorrhizal fungi enhance weed control and crop growth in a soybean-cockle-bur association treated with the herbicide bentazon. J Appl Soil Ecol 3:205–214

    Google Scholar 

  • Budi SW, Blal B, Gianinazzi S (1999) Surface sterilization of Glomus mosseae sporocarps for studying endomycorrhization in vitro. Mycorrhiza 9:65–68

    Google Scholar 

  • Caldwell MM, Virginia RA (1989) Root systems. In: Pearcy RW, Ehleringer JA, Mooney HA, Rundel PW (eds) Plant physiological ecology-field methods and instrumentation. Chapman and Hall, London, pp 367–398

    Google Scholar 

  • Celik I, Ortas I, Kilic S (2004) Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Tillage Res 78:59–67

    Google Scholar 

  • Chaudhari D (2015) A short review on polonium as a carcinogen in tobacco. Int J Adv Res 3:1092–1093

    CAS  Google Scholar 

  • Chellapan P, Chrasty SAA, Mahadevan A (2001) Multiplication of mycorrhizaon roots. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer Academic Publishers, The Netherlands, pp 285–297

    Google Scholar 

  • Chuck S (2008) Screening evaluation of heavy metals in inorganic fertilizers. Minnesota Department of Health, St Paul, MN, p 26

    Google Scholar 

  • Cooper AJ (1975) Crop production in there circulating nutrient solutions. Sci Hortic 3:251–258

    Google Scholar 

  • Cordire C, Gianinnzi P, Gianinnzi S (1996) Colonization patterns of root tissues by Phytophthora nicotiana var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Google Scholar 

  • Dalpe Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manage. https://doi.org/10.1094/CM-2004-0301-09-RV

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of mycorrhiza colonizing arable crops. FEMS Microbiol Ecol 36:203–209

    CAS  PubMed  Google Scholar 

  • Elsen A, Declerck S, Waele D (2001) Efect of Glomus intraradicies on the reproduction of burrowing nematodes (Rhadopholus similis) in dixenic culture. Mycorrhiza 11:49–51

    Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2000) Species composition and spore density of indigenous vesicular-mycorrhiza under different conditions of P fertility as revealed by soybean trap culture. J Soil Sci Plant Nutr 46:291–297

    Google Scholar 

  • Fortin JA, Becard G, Declerck S, Dalpe Y, Arnaud SM, Coughlan AP, Piche Y (2002) Arbuscular mycorrhiza on root organ cultures. Can J Bot 80:1–20

    CAS  Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems. VI. Transfer of nutrients in inter and intra-specific combinations of host plants. J New Phytol 120:103–111

    Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. J Appl Soil Ecol 16:35–48

    Google Scholar 

  • Fray B, Schuepp H (1993) Acquisition of N by external hyphae of AM fungi associated with maize. New Phytol 124:221–230

    Google Scholar 

  • Galvez L, Douds DD, Drinkwater JLE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. J Plant Soil 228:299–308

    CAS  Google Scholar 

  • Gange AC, West HM (1994) Interactions between mycorrhiza and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    PubMed  Google Scholar 

  • Gange AC, Lindsay DE, Ellis LS (1999) Can mycorrhizabe used to control undesirable grass Poa annua on golf courses. J Appl Ecol 36:909–919

    Google Scholar 

  • Gaur R, Shani N, Kawaljeet K, Johri BN, Rossi P, Aragno M (2004) Diacetylchloroglucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Curr Sci 86:453–457

    CAS  Google Scholar 

  • Gerdemenn JV, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46:235–244

    Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infections and heavy metals in plants. New Phytol 95:263–268

    CAS  Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. J Mycol Res 98:705–715

    Google Scholar 

  • Gnekow MA, Marschner H (1989) Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. Domestica) rootstock cuttings. J Plant Soil 119:285–293

    Google Scholar 

  • Gosling P, Shepherd M (2005) Long term changes in soil fertility in organic farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105:425–432

    CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Mycorrhizaand organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Gryndler M, Hrselova H, Cajthaml T, Havrankova M, Rezacova V, Gryndlerova H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266

    PubMed  Google Scholar 

  • Guillemin JP, Gianinazzi P, Marchal J (1994) Contribution of mycorrhizas to biological protection of micropropagated pine apple (Ananas comosus (L) Merr) against Phthopthora cinnamomi Rads. Agric Sci Finl 3:241–251

    Google Scholar 

  • Guillon C, Arnod STM, Hamel C, Jabaji HSH (2002) Differential and systemic alteration of defence related gene transcript levels in mycorrhizal bean plants with Rhizoctonia solani. Can J Bot 80:305–315

    CAS  Google Scholar 

  • Hall IR, Armstrong P (1979) The effect of vesicular-arbuscular mycorrhizas on growth of clover, lotus and ryegrass in some eroded soils. J Agric Res 22:479–484

    Google Scholar 

  • Hall IR, Kelson A (1981) An improved technique for the production of endomycorrhizal infested soil pellets. N Z J Agric Res 24:221–222

    Google Scholar 

  • Hamel C, Dalpe Y, Lapierre C, Simard RR, Smith DL (1996) Endomycorrhiza in a newly cultivated acidic meadow: Effects of three years of barley cropping, tillage, lime and phosphorus on root colonization and soil infectivity. Biol Fertil Soils 21:160–165

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of mycorrhizain the bio protection of plants against soil borne pathogens in organic and/or sustainable farming systems. Pest Manag Sci 60:149–157

    CAS  PubMed  Google Scholar 

  • Hayman DS (1982) Practical aspects of vesicular-arbuscular mycorrhiza. In: Subbra-Rao NS (ed) Advances in agricultural microbiology. Oxford and IBM Publishing Company, New Delhi, pp 325–373

    Google Scholar 

  • Hayman DS (1986) Mycorrhizae of nitrogen fixing legumes. World J Microbiol Biotechnol 2:121–145

    Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108:417–423

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431–431

    CAS  PubMed  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Am J Soil Sci 44:654–658

    CAS  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular mycorrhiza in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Google Scholar 

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS J Microbiol Ecol 32:91–96

    CAS  Google Scholar 

  • Howeler RH, Sieverding E, Saif F (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283

    Google Scholar 

  • IFOAM (1998) Basic standards for organic production and processing. IFOAM Publications, Germany

    Google Scholar 

  • Jalali BL, Chand H (1988) Role of VAM in biological control of plant diseases. In: Mohadevan A, Raman N, Natarajan K (eds) Mycorrhizae for Green Asia. Madras Express Service, India, pp 209–215

    Google Scholar 

  • Jeffries P, Barrea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant-soil systems. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Publisher, Basel, pp 101–115

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS J Microbiol Ecol 48:1–13

    CAS  Google Scholar 

  • Joner EJ (1996) Mycorrhiza in organic farming E8. In: Proceedings of the 11th IFOAM scientific conference, 11–15 August, Copenhagen, Denmark

    Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1998) Dynamics of the Mycorrhizal symbiosis of corn (Zea mays L.): effects of host physiology, tillage practice and fertilization on spatial distribution of extra-radical mycorrhizal hyphae in the field. J Agric Ecosyst Environ 68:151–163

    Google Scholar 

  • Kessel CV, Singleton PW, Hoben HJ (1985) Enhanced N-transfer from soybean to maize by vesicular-arbuscular mycorrhizal (VAM) fungi. J Plant Physiol 79:562–563

    Google Scholar 

  • Khan AG (1981) Growth response of endomycorrhizal onions in non-sterilized coal waste. New Phytol 87:363–370

    CAS  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR et al (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Switzerland, pp 317–332

    Google Scholar 

  • Khosro M, Yousef S (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biolog Sci 7: 307–316

    Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. J Plant Soil 72:39–48

    CAS  Google Scholar 

  • Kormanik P, Bryan WC, Schultz RL (1980) Procedure and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Can J Microbiol 26:536–538

    CAS  PubMed  Google Scholar 

  • Kurle JE, Pfleger FL (1994) The effects of cultural practices and pesticides on VAM fungi. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 101–131

    Google Scholar 

  • Lambert DH, Baker DE, Cole H (1979) The role of mycorrhizae in the interaction of phosphorus with zinc, copper and other elements. J Am Soc Soil Sci 43:976–980

    CAS  Google Scholar 

  • Lange NR, Vlek PLG (2000) Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal fungi. J Am Soc Soil Sci 64:949–955

    Google Scholar 

  • Lester D (2009) Buying and applying mycorrhizal fungi. Max. Yield, USA, pp 126–131

    Google Scholar 

  • Mader P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. J Biol Fertil Soils 31:150–156

    Google Scholar 

  • McNeil AM, Wood M (1990) Fixation and transfer of nitrogen from white clover to ryegrass. Soil Use Manag 6:84–86

    Google Scholar 

  • Menendez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal population associated with natural and cultivated vegetation on a site of Buenos Aires Province, Argentina. J Biol Fertil Soils 33:373–381

    Google Scholar 

  • Mohammad A, Khan AG, Kueck C (2000) Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339

    Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions and their potential role in biological control. Plant Soil 185:241–251

    CAS  Google Scholar 

  • Morton JB (1985) Variation in mycorrhizal and spore morphology of Glomus occultum and Glomus diaphanum as influenced by plant host and soil environment. Mycologia 77:192–204

    Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi and nutrient concentrations in maize, wheat and canola. J Agron 92:1117–1124

    CAS  Google Scholar 

  • Mridha MAU, Xu HL (2001) Nature farming with vesicular-arbuscular mycorrhizae in Bangladesh. J Crop Prod 3:303–312

    Google Scholar 

  • Murashige T, Skoog F (1962) revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    CAS  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Google Scholar 

  • Newman EI, Ritz K (1986) Evidence on the pathways of phosphorus transfer between vesicular-arbuscular mycorrhizal plants. New Phytol 104:77–78

    CAS  PubMed  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragaria shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of mycorrhizain agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki A, Rayns FW, Gosling P, Bending GD, Turner MK (2004) Does organic farming favour arbuscular mycorrhizal fungi. In: Proceedings of the BGS/AAB/COR conference, 20–22 April, Harper Adams University College, Newport, pp 260–262

    Google Scholar 

  • Pacovsky RS (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant Soil 95:379–388

    CAS  Google Scholar 

  • Pattanayak SK, Sureshkumar P, Tarafdar JC (2009) New vista in phosphorus research. J Indian Soc Soil Sci 57:536–545

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular mycorrhiza for rapid assessment of infection. Trans Brit Mycol Soc 13:31–32

    Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by VAM fungi collected from saline soils. Mycology 76:74–84

    Google Scholar 

  • Quarles W (1999) Plant disease control and VAM fungi. IPM Pract 21:1–9

    Google Scholar 

  • Ravnskov S, Larsen J, Jakobsen I (2002) Phosphorus uptake of an arbuscular mycorrhizal fungus is not affected by the biocontrol bacterium Burkholderia cepacia. J Soil Biol Biochem 34:1875–1881

    CAS  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH (ed) Ecological interactions in soil. Oxford Blackwell Scientific, London, pp 193–217

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rupam K, Deepika S, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation system and their applications. Sci Hortic 116:227–239

    Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for mycorrhiza in production agriculture. Plant Soil 244:263–271

    CAS  Google Scholar 

  • Ryan MH, Chilvers GA, Dumaresq DC (1994) Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 160:33–40

    Google Scholar 

  • Scholten LC, Timmermans CWM (1992) Natural radioactivity in phosphate fertilizers. Nutr Cycl Agroecosyst 43:103–107

    Google Scholar 

  • Shafi A, Mahmood I, Siddiqui ZA (2002) Integrated management of root-knot nematode Meloidogyne incognita on chickpea. Thai J Agric Sci 35:273–280

    Google Scholar 

  • Sharma S, Dohroo NP (1996) Vesicular-arbuscular mycorrhizae in plant health and disease management. Int J Trop Plant Dis 14:147–155

    Google Scholar 

  • Shrestha-Vaidya G, Shrestha K, Khadge BR, Johnson NC, Wallander H (2008) Organic matter stimulates mycorrhizain Bauhinia purpurea and Leucaena diversifolia plantations on eroded slopes in Nepal. Restoration Ecol 16:79–87

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995a) Role of plant symbionts in nematode management: a review. Bioresour Technol 54:217–226

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995b) Some observations on the management of the wilt disease complex of pigeonpea by treatment with a vesicular arbuscular fungus and biocontrol agents for nematodes. Bioresour Technol 54:227–230

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporum. Israel J Plant Sci 44:49–56

    Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I, Hayat S (1998) Biocontrol of Heterodera cajani and Fusarium udum on pigeonpea using Glomus mosseae, Paeciliomyces lilacinus and Pseudomonas fluorescens. Thai J Agric Sci 31:310–321

    Google Scholar 

  • Singh G, Tilak KUBR (2001) Techniques of AM fungus inoculum production. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer Academic Publishers, The Netherlands, pp 273–283

    Google Scholar 

  • Smith SE, Read DJ (1997) Vesicular-arbuscular mycorrhizas in agriculture and horticulture. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, pp 453–469

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London. ISBN-10:0123705266

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • St-Arnaud M, Hamel B, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum F. dianthi in the non VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005

    Google Scholar 

  • Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM et al (2001) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–262

    Google Scholar 

  • Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol Plant 102:285–296

    CAS  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of external hyphae of an arbuscular mycorrhizal fungus (Glomus intraradices Schenck & Smith) and its impact on physiological responses in maize (Zea mays L.) under drought-stressed and well watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Sylvia DM, Will ME (1988) Establishment of vesicular-mycorrhiza and other microorganisms on beach replenishment site in Florida. Appl Environ Microbiol 54:348–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Anwar MR (2007) Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andisol. Field Crops Res 101:160–171

    Google Scholar 

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on mycorrhiza for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos M, Ursic P, Moutoglis, Streitwolf-Engel R et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Barberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. In: Proceedings of the 16th IFOAM Organic World Congress, 16–20 June, Modena, Italy, pp 1–4

    Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243

    CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  PubMed  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247

    Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal polluted soils. Plant Soil 157:247–256

    CAS  Google Scholar 

  • Whipps M (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • White JA, Munn JC, William SEW (1989) Edaphic and reclamation aspects of vesicular-arbuscular mycorrhizae in Wyoming red desert soils. J Soil Sci Soc Am 53:86–90

    Google Scholar 

  • Zou X, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization rate in soils. Plant Soil 147:243–250

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sofi, M.N., Bhat, R.A., Rashid, A., Mir, N.A., Mir, S.A., Lone, R. (2017). Rhizosphere Mycorrhizae Communities an Input for Organic Agriculture. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_21

Download citation

Publish with us

Policies and ethics