Skip to main content

Role of Mycorrhiza in Phytoremediation Processes: A Review

  • Chapter
  • First Online:
Book cover Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Mycorrhizal fungi has been explored for several purposes including enhancement of crop production in marginal soil, improvement of soil health and also for providing protection to crops under environmental stress conditions. Through this chapter an attempt is made to highlight some aspects on worldwide uses of mycorrhiza for phytoremediation processes, case studies have been presented highlighting TERI’s phytoremediation work across various sectors in India and abroad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  PubMed  Google Scholar 

  • Bafeel SO (2008) Contribution of mycorrhizae in phytoremediation of lead contaminated soils by Eucalyptus rostrata plants. World Appl Sci J 5:490–498

    Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Bielinska EJ, Pranagal J (2007) Enzymatic activity of soil contaminated with triazine herbicides. Pol J Environ Stud 16:295–300

    CAS  Google Scholar 

  • Charest C, Clark G, Dalpe Y (1997) The impact of arbuscular mycorrhizae and phosphorus on growth of two turfgrass species. J Turf Grass Manage 2:1–14

    Article  Google Scholar 

  • Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and Zn uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Cheng XM, Baumgartner K (2006) Effects of mycorrhizal roots and extraradical hyphae on 15N uptake from vineyard cover crop litter and the soil microbial community. Soil Biol Biochem 38:2665–2675

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Das M, Agarwal P, Singh R, Adholeya A (2013) A study of abandoned ash ponds reclaimed through green cover development. Int J Phytorem 15:320–329

    Article  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular arbuscular mycorrhizal fungus. New Phytol 107:163–172

    Article  CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1994) Strontium-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ Pollut 86:201–206

    Article  CAS  PubMed  Google Scholar 

  • Entry JA, Watrud LS, Reeves M (1999) Accumulation of cesium-137 and strontium-90 from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104:449–457

    Article  CAS  Google Scholar 

  • Forstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, FL, pp 1–33

    Google Scholar 

  • Genney DR, Alexander IJ, Killham K, Meharg AA (2004) Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytol 163:641–649

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC (1992) Protein activities as potential markers of functional endomycorrhiza in plants. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International Wallingford, Oxon, pp 333–339

    Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, Heidelberg, pp 213–252

    Chapter  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Goncharova NV (2009) Availability of radiocasium in plant from soil: facts, mechanisms and modeling. Glob NEST J 11:260–266

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–711

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Huang HL, Zhang SZ, Shan XQ, Chen BD, Zhu YG, Bell JNB (2007) Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ Pollut 146:452–457

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zhang S, Wu N, Luo L, Christie P (2009) Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol Biochem 41:726–734

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Joner EJ, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ Sci Technol 37:2371–2375

    Article  CAS  PubMed  Google Scholar 

  • Joner EJ, Johansen A, dela Cruz MAT, Szolar OJH, Loibner A, Portal JM, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35:2773–2777

    Article  CAS  PubMed  Google Scholar 

  • Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38

    Article  CAS  PubMed  Google Scholar 

  • Kazemi HV, Anderson SH, Goyne KW, Gantzer CJ (2008) Atrazine and alachlor transport in claypan soils as influenced by differential antecedent soil water content. J Environ Qual 37:1599–1607

    Article  CAS  PubMed  Google Scholar 

  • Kim CG, Power SA, Bell JN (2004) Effects of host plant exposure to cadmium on mycorrhizal infection and soluble carbohydrate levels of Pinus sylvestris seedlings. Environ Pollut 131:287–294

    Article  CAS  PubMed  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassay. Mutat Res 420:37–48

    Article  CAS  PubMed  Google Scholar 

  • Knudson JA, Meikle T, DeLuca TH (2003) Role of mycorrhizal fungi and phosphorus in the Arsenic tolerance of Basin wild rye. J Environ Qual 32:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Korade DL, Fulekar MH (2009) Development and evaluation of mycorrhiza for rhizosphere bioremediation. J Appl Biosci 17:922–929

    Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizae and rhizosphere microorganisms on mineral nutrient acquisition by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora- the mycorrhizosphere effect. Phytopathol 78:366–371

    Google Scholar 

  • Liu SL, Luo YM, Cao ZH, LH W, Ding KQ, Christie P (2004) Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ Geochem Health 26:285–293

    Article  CAS  PubMed  Google Scholar 

  • Long XX, Yang XE, Ni WZ (2002) Current status and perspective on phytoremediation of heavy metal polluted soils. J Appl Ecol 13:757–762

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Malcova R, Vosátka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Parker DR, Clark JM (1999) Metals and micronutrients-food safety issues. Field Crops Res 60:143–163

    Article  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–474

    Google Scholar 

  • Nanda Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Oliveria RS, Castro PML, Dodd JC, Vostaka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. On the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470

    Article  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perucei P, Scarponi L, Monotti M (1988) Interference with soil phosphatase activity by maize herbicidal treatment and incorporation of maize residues. Biol Fertil Soils 6:286–291

    Google Scholar 

  • Purin S, Rillig MC (2008) Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol Lett 279:8–14

    Article  CAS  PubMed  Google Scholar 

  • Rabie GH (2004) Using wheat-mungbean plant system and arbuscular mycorrhiza to enhance in-situ bioremediation. Food Agric Environ 2:381–390

    CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi P (2002) Cadmium accumulation and buffering of cadmium induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Schoor JL (1997) Phytoremediation. Technical evaluation report for Ground-Water Remediation Technologies Analysis Center, Pittsburgh

    Google Scholar 

  • Seibert K, Fuehr F, Cheng HH (1991) Experiments on the degradation of atrazine in the maize-rhizosphere soil. Theory and practical use of soil applied herbicide. European Weed Research Society Symposium, Paris, pp 137–146

    Google Scholar 

  • Singh N, Megharaj M, Kookana RS, Naidu R, Sethunathan N (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought stress and recovery. Physiol Plant 102:285–296

    Article  CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhizal of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Varskog P, Naeumann R, Steinnes E (1994) Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility. J Environ Radioact 22:43–53

    Article  Google Scholar 

  • Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Vivas A, Marulanda A, Gomez M, Barea JM, Azcon R (2003) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35:987–996

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  CAS  PubMed  Google Scholar 

  • White JC, Ross DW, Gent MPN, Eitzer BD, Mattina MJI (2006) Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. J Hazard Mater B 137:1750–1757

    Article  CAS  Google Scholar 

  • Wu NY, Zhang SZ, Huang HL, Christie P (2008a) Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Science Total Environ 394:230–236

    Article  CAS  Google Scholar 

  • Wu NY, Zhang SZ, Huang HL, Shan XQ, Christie P, Wang YS (2008b) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environ Pollut 151:569–575

    Article  CAS  PubMed  Google Scholar 

  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work is the outcome of various projects and the authors duly acknowledge the financial assistance provided by National Thermal Power Corporation Limited, Korba; Vijayawada Thermal Power Station, Andhra Pradesh; Badarpur Thermal Power Station, Delhi; Technology Information and Forecasting & Assessment Council, Delhi; Fly Ash Mission, Delhi; Tata Chemicals Ltd, Gujarat; Associated Alcohols and Breweries Ltd, Madhya Pradesh; Sadeer Medical, Qatar; Coromandel International Ltd., Vizag and Department of Science and Technology, Government of India. The authors thank all workers, advisers, technicians and researchers who contributed to case studies of TERI’s reclamation projects. The authors duly acknowledge the infrastructure support provided by TERI. Dr. Reena Singh is duly acknowledged for reviewing and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M., Jakkula, V.S., Adholeya, A. (2017). Role of Mycorrhiza in Phytoremediation Processes: A Review. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_14

Download citation

Publish with us

Policies and ethics