PIV Uncertainty and Measurement Accuracy

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

The chapter starts with an overview of common PIV measurement error contributions. Then important parameters for the optimization of PIV measurements are discussed and the significance of the dynamic velocity range and dynamic spatial range is outlined. Thereafter, the concept of measurement error is introduced and the error propagation essentials are discussed. The sensitivity of the measurement uncertainty on the particle image size, particle image density, background noise, particle image shift, out-of-plane motion, light-sheet mismatch, displacement gradients and streamline curvature is discussed in detail. The chapter finishes with strategies to optimize PIV uncertainties and outlines the main implications of the uncertainty analysis for multi-camera recording systems. The aim of this chapter is to familiarize the reader with various sources and sensitivities of PIV measurement uncertainty which will be instructive for optimizing PIV measurements in practice.

References

  1. 1.
    Adrian, R.J.: Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas. Sci. Technol. 8(12), 1393–1398 (1997). DOI 10.1088/0957-0233/8/12/003. URL https://doi.org/10.1088/0957-0233/8/12/003
  2. 2.
    Charonko, J.J., Vlachos, P.P.: Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas. Sci. Technol. 24(6), 065301 (2013). DOI 10.1088/0957-0233/24/6/065301. URL http://stacks.iop.org/0957-0233/24/i=6/a=065301
  3. 3.
    Chen, J., Katz, J.: Elimination of peak-locking error in PIV analysis using the correlation mapping method. Meas. Sci. Technol. 16(8), 1605 (2005). DOI 10.1088/0957-0233/16/8/010. URL http://stacks.iop.org/0957-0233/16/i=8/a=010
  4. 4.
    Christensen, K.T.: The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36(3), 484–497 (2004). DOI 10.1007/s00348-003-0754-2. URL http://dx.doi.org/10.1007/s00348-003-0754-2
  5. 5.
    Christensen, K.T., Scarano, F.: Uncertainty quantification in particle image velocimetry. Meas. Sci. Technol. 26(7), 070201 (2015). DOI 10.1088/0957-0233/26/7/070201. URL http://stacks.iop.org/0957-0233/26/i=7/a=070201
  6. 6.
    Cowen, E.A., Monismith, S.G.: A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22(3), 199–211 (1997). DOI 10.1007/s003480050038. URL http://dx.doi.org/10.1007/s003480050038
  7. 7.
    Eckstein, A.C., Charonko, J., Vlachos, P.: Phase correlation processing for DPIV measurements. Exp. Fluids 45(3), 485–500 (2008). DOI 10.1007/s00348-008-0492-6. URL http://dx.doi.org/10.1007/s00348-008-0492-6
  8. 8.
    Huang, H.T., Fiedler, H.E., Wang, J.J.: Limitation and improvement of PIV, Part II. Particle image distortion, a novel technique. Exp. Fluids 15(4–5), 263–273 (1993). DOI 10.1007/BF00223404. URL http://dx.doi.org/10.1007/BF00223404
  9. 9.
    Kähler, C.J.: Ortsaufgelöste Geschwindigkeitsmessungen in einer turbulenten Grenzschicht. Technical report, DLR, Göttingen, Germany (1997). DLR-FB-1997-32Google Scholar
  10. 10.
    Kähler, C.J.: Multiplane stereo PIV - recording and evaluation methods. In: EUROMECH 411: Application of PIV to Turbulence Measurements, University of Rouen, France (2000)Google Scholar
  11. 11.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Ph.D. thesis, Georg-August-University zu Göttingen, Germany (2004). URL http://hdl.handle.net/11858/00-1735-0000-0006-B4C8-8.DLR-FB-2004-24
  12. 12.
    Kähler, C.J., Kompenhans, J.: Multiple plane stereo PIV – technical realization and fluid-mechanical significance. In: 3rd International Workshop on PIV, Santa Barbara, USA (1999)Google Scholar
  13. 13.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000). DOI 10.1007/s003480070009. URL http://dx.doi.org/10.1007/s003480070009
  14. 14.
    Kähler, C.J., Adrian, R.J., Willert, C.E.: Turbulent boundary layer investigations with conventional and stereoscopic particle image velocimetry. In: 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (1998)Google Scholar
  15. 15.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL http://dx.doi.org/10.1007/s00348-012-1280-x
  16. 16.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL http://dx.doi.org/10.1007/s00348-012-1307-3
  17. 17.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 796, 257–284 (2016). DOI 10.1017/jfm.2016.250. URL http://dx.doi.org/10.1017/jfm.2016.250
  18. 18.
    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., La Foy, R., Cierpka, C.: Main results of the 4th international PIV challenge. Exp. Fluids 57(6), 97 (2016). DOI 10.1007/s00348-016-2173-1. URL http://dx.doi.org/10.1007/s00348-016-2173-1
  19. 19.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1(11), 1202 (1990). DOI 10.1088/0957-0233/1/11/013. URL http://stacks.iop.org/0957-0233/1/i=11/a=013
  20. 20.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters: II. Multiple pulsed systems. Meas. Sci. Technol. 2(10), 963 (1991). DOI 10.1088/0957-0233/2/10/013. URL http://stacks.iop.org/0957-0233/2/i=10/a=013
  21. 21.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992). DOI 10.1007/BF00384623. URL https://dx.doi.org/10.1007/BF00384623
  22. 22.
    Keane, R.D., Adrian, R.J., Zhang, Y.: Super-resolution particle imaging velocimetry. Meas. Sci. Technol. 6(6), 754 (1995). DOI 10.1088/0957-0233/6/6/013. URL http://stacks.iop.org/0957-0233/6/i=6/a=013
  23. 23.
    Lawson, N.J., Wu, J.: Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas. Sci. Technol. 8(12), 1455 (1997). DOI 10.1088/0957-0233/8/12/009. URL http://stacks.iop.org/0957-0233/8/i=12/a=009
  24. 24.
    Masullo, A., Theunissen, R.: Adaptive vector validation in image velocimetry to minimise the influence of outlier clusters. Exp. Fluids 57(3), 33 (2016). DOI 10.1007/s00348-015-2110-8. URL http://dx.doi.org/10.1007/s00348-015-2110-8
  25. 25.
    Michaelis, D., Neal, D.R., Wieneke, B.: Peak-locking reduction for particle image velocimetry. Meas. Sci. Technol. 27(10), 104005 (2016). DOI 10.1088/0957-0233/27/10/104005. URL http://stacks.iop.org/0957-0233/27/i=10/a=104005
  26. 26.
    Neal, D.R., Sciacchitano, A., Smith, B.L., Scarano, F.: Collaborative framework for PIV uncertainty quantification: the experimental database. Meas. Sci. Technol. 26(7), 074003 (2015). DOI 10.1088/0957-0233/26/7/074003. URL http://stacks.iop.org/0957-0233/26/i=7/a=074003
  27. 27.
    Nerger, D., Kähler, C.J., Radespiel, R.: Zeitaufgelöste PIV-Messungen an einem schwingenden SD7003-Profil bei re\( = 6\times 104\). Lasermethoden in der Strömungsmechanik, GALA eV, Braunschweig, Germany (2003). URL http://www.gala-ev.org/images/Beitraege/Beitraege
  28. 28.
    Nobach, H., Bodenschatz, E.: Limitations of accuracy in PIV due to individual variations of particle image intensities. Exp. Fluids 47(1), 27–38 (2009). DOI 10.1007/s00348-009-0627-4. URL http://dx.doi.org/10.1007/s00348-009-0627-4
  29. 29.
    Nogueira, J., Lecuona, A., Rodriguez, P.: Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp. Fluids 27(2), 107–116 (1999). DOI 10.1007/s003480050335. URL http://dx.doi.org/10.1007/s003480050335
  30. 30.
    Overmars, E.F.J., Warncke, N.G.W., Poelma, C., Westerweel, J.: Bias errors in PIV: the pixel locking effect revisited. In: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 05–08 July 2010 (2010). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2010/upload/1787_ysdxtb_1.12.1.Full_1787.pdf
  31. 31.
    Ronneberger, O.: Measurement of all three velocity components with particle image velocimetry using a single camera and two parallel light sheets. Technical report, DLR, Göttingen, Germany (1998). URL https://lmb.informatik.uni-freiburg.de/Publications/1998/Ron98/. Diploma thesis, Universität Göttingen, Germany
  32. 32.
    Ronneberger, O., Raffel, M., Kompenhans, J.: Advanced evaluation algorithms for standard and dual plane particle image velocimetry. In: 9th International Symposium on Applications of Lasers to Fluid Mechanics, Lisbon, Portugal (1998)Google Scholar
  33. 33.
    Roth, G.I., Katz, J.: Five techniques for increasing the speed and accuracy of PIV interrogation. Meas. Sci. Technol. 12(3), 238 (2001). DOI 10.1088/0957-0233/12/3/302. URL http://stacks.iop.org/0957-0233/12/i=3/a=302
  34. 34.
    Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. Technol. 13(1), R1 (2002). DOI 10.1088/0957-0233/13/1/201. URL https://dx.doi.org/10.1088/0957-0233/13/1/201
  35. 35.
    Scarano, F., Riethmuller, M.L.: Advances in iterative multigrid PIV image processing. Exp. Fluids 29(1), S051–S060 (2000). DOI 10.1007/s003480070007. URL http://dx.doi.org/10.1007/s003480070007
  36. 36.
    Scharnowski, S., Grayson, K., de Silva, C.M., Hutchins, N., Marusic, I., Kähler, C.J. : Generalization of the PIV loss-of-correlation formula introduced by Keane and Adrian, Experiments in Fluids, 58(10), p.150 (2017). DOI 10.1007/s00348-017-2431-x. URL https://doi.org/10.1007/s00348-017-2431-x
  37. 37.
    Scharnowski, S., Kähler, C.J.: On the effect of curved streamlines on the accuracy of PIV vector fields. Exp. Fluids 54(1), 1435 (2012). DOI 10.1007/s00348-012-1435-9. URL http://dx.doi.org/10.1007/s00348-012-1435-9
  38. 38.
    Scharnowski, S., Kähler, C.J.: Estimation and optimization of loss-of-pair uncertainties based on PIV correlation functions. Exp. Fluids 57(2), 23 (2016). DOI 10.1007/s00348-015-2108-2. URL http://dx.doi.org/10.1007/s00348-015-2108-2
  39. 39.
    Scharnowski, S., Kähler, C.J.: On the loss-of-correlation due to PIV image noise. Exp. Fluids 57(7), 119 (2016). DOI 10.1007/s00348-016-2203-z. URL http://dx.doi.org/10.1007/s00348-016-2203-z
  40. 40.
    Scharnowski, S., Statnikov, V., Meinke, M., Schröder, W., Kähler, C.J.: Combined experimental and numerical investigation of a transonic space launcher wake. In: EUCASS Proceedings Series - Advances in AeroSpace Sciences, Progress in Flight Physics, vol. 7, pp. 311–328 (2015). DOI 10.1051/eucass/201507311. URL https://doi.org/10.1051/eucass/201507311
  41. 41.
    Sciacchitano, A., Wieneke, B.: PIV uncertainty propagation. Meas. Sci. Technol. 27(8), 084006 (2016). DOI 10.1088/0957-0233/27/8/084006. URL http://stacks.iop.org/0957-0233/27/i=8/a=084006
  42. 42.
    Sciacchitano, A., Scarano, F., Wieneke, B.: Multi-frame pyramid correlation for time-resolved PIV. Exp. Fluids 53(4), 1087–1105 (2012). DOI 10.1007/s00348-012-1345-x. URL http://dx.doi.org/10.1007/s00348-012-1345-x
  43. 43.
    Sciacchitano, A., Wieneke, B., Scarano, F.: PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24(4), 045302 (2013). DOI 10.1088/0957-0233/24/4/045302. URL http://stacks.iop.org/0957-0233/24/i=4/a=045302
  44. 44.
    Sciacchitano, A., Neal, D.R., Smith, B.L., Warner, S.O., Vlachos, P.P., Wieneke, B., Scarano, F.: Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas. Sci. Technol. 26(7), 074004 (2015). DOI 10.1088/0957-0233/26/7/074004. URL http://stacks.iop.org/0957-0233/26/i=7/a=074004
  45. 45.
    Stanislas, M., Okamoto, K., Kähler, C.J.: Main results of the first international PIV challenge. Meas. Sci. Technol. 14(10), R63 (2003). DOI 10.1088/0957-0233/14/10/201. URL http://stacks.iop.org/0957-0233/14/i=10/a=201
  46. 46.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the second international PIV challenge. Exp. Fluids 39(2), 170–191 (2005). DOI 10.1007/s00348-005-0951-2. URL http://dx.doi.org/10.1007/s00348-005-0951-2
  47. 47.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J., Scarano, F.: Main results of the third international PIV challenge. Exp. Fluids 45(1), 27–71 (2008). DOI 10.1007/s00348-008-0462-z. URL http://dx.doi.org/10.1007/s00348-008-0462-z
  48. 48.
    Sugii, Y., Nishio, S., Okuno, T., Okamoto, K.: A highly accurate iterative PIV technique using a gradient method. Meas. Sci. Technol. 11(12), 1666 (2000). DOI 10.1088/0957-0233/11/12/303. URL https://doi.org/10.1088/0957-0233/11/12/303
  49. 49.
    Timmins, B.H., Wilson, B.W., Smith, B.L., Vlachos, P.P.: A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp. Fluids 53(4), 1133–1147 (2012). DOI 10.1007/s00348-012-1341-1. URL http://dx.doi.org/10.1007/s00348-012-1341-1
  50. 50.
    Wereley, S.T., Meinhart, C.D.: Second-order accurate particle image velocimetry. Exp. Fluids 31(3), 258–268 (2001). DOI 10.1007/s003480100281. URL http://dx.doi.org/10.1007/s003480100281
  51. 51.
    Westerweel, J.: Digital particle image velocimetry: theory and application. Ph.D. thesis, Mechanical Maritime and Materials Engineering, Delft University of Technology (1993). URL http://repository.tudelft.nl/islandora/object/uuid:85455914-6629-4421-8c77-27cc44e771ed/datastream/OBJ/download
  52. 52.
    Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005). DOI 10.1007/s00348-005-0016-6. URL http://dx.doi.org/10.1007/s00348-005-0016-6
  53. 53.
    Wieneke, B.: Stereo-PIV using self-calibration on particle images. Exp. Fluids 39(2), 267–280 (2005). DOI 10.1007/s00348-005-0962-z. URL https://dx.doi.org/10.1007/s00348-005-0962-z
  54. 54.
    Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26(7), 074002 (2015). DOI 10.1088/0957-0233/26/7/074002. URL http://stacks.iop.org/0957-0233/26/i=7/a=074002
  55. 55.
    Willert, C.E.: The fully digital evaluation of photographic PIV recordings. Appl. Sci. Res. 56 (2–3), 79–102 (1996). DOI 10.1007/BF02249375. URL http://dx.doi.org/10.1007/BF02249375
  56. 56.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991). DOI 10.1007/BF00190388. URL https://dx.doi.org/10.1007/BF00190388
  57. 57.
    Willert, C.E., Stasicki, B., Raffel, M., Kompenhans, J.: Digital video camera for application of particle image velocimetry in high-speed flows. In: S.S. Cha, J.D. Trolinger (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2546, pp. 124–134 (1995). DOI 10.1117/12.221515. URL http://dx.doi.org/10.1117/12.221515
  58. 58.
    Wilson, B.M., Smith, B.L.: Uncertainty on PIV mean and fluctuating velocity due to bias and random errors. Meas. Sci. Technol. 24(3), 035302 (2013). DOI 10.1088/0957-0233/24/3/035302. URL http://stacks.iop.org/0957-0233/24/i=3/a=035302
  59. 59.
    Xue, Z., Charonko, J.J., Vlachos, P.P.: Particle image pattern mutual information and uncertainty estimation for particle image velocimetry. Meas. Sci. Technol. 26(7), 074001 (2015). DOI 10.1088/0957-0233/26/7/074001. URL http://stacks.iop.org/0957-0233/26/i=7/a=074001

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations