Advertisement

Recording Techniques for PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

Based on the physical concepts of electronic imaging introduced in the previous chapter, this chapter focusses on the image sensor technology in the context of PIV image recording. Loosely based on the historical development of CCD image sensor technology, the chapter describes the advancements such as on-chip intermediate storage, asynchronous triggering and the lens-on-chip technique that were instrumental in making the “double-shutter” PIV camera possible, that has been the workhorse throughout the PIV community for the past two decades. Details such as the synchronization of these cameras with the light source are covered. Driven by the consumer market, CMOS imaging is nowadays increasingly replacing the CCD sensor in PIV-suitable cameras, in particular, through the introduction of low noise imagers such as the scientific CMOS. Beyond this, high-speed CMOS imager allow the extension of PIV technique to capture temporally highly resolved velocity data at rates in excess of 10,000 recordings per second.

References

  1. 1.
    Adrian, R.J.: Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Appl. Opt. 25(21), 3855–3858 (1986). DOI 10.1364/AO.25.003855. URL http://ao.osa.org/abstract.cfm?URI=ao-25-21-3855
  2. 2.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23(1), 261–304 (1991). DOI 10.1146/annurev.fl.23.010191.001401. URL https://dx.doi.org/10.1146/annurev.fl.23.010191.001401
  3. 3.
    Bertuccioli, L., Gopalan, S., Katz, J.: Image shifting for PIV using birefringent and ferroelectric liquid crystals. Exp. Fluids 21(5), 341–346 (1996). DOI 10.1007/BF00189054. URL http://dx.doi.org/10.1007/BF00189054
  4. 4.
    Gauthier, V., Riethmuller, M.L.: Application of PIDV to complex flows: Resolution of the directional ambiguity. In: Particle Image Displacement Velocimetry, von Karman Institute for Fluid Dynamics Lecture Series 1988-06. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1988)Google Scholar
  5. 5.
    Goss, L.P., Post, M.E., Trump, D.D., Sarka, B.: Two-color particle velocimetry. In: ICALEO 1989, vol. 68, pp. 101–111. Laser Institute of America (1989). DOI 10.1117/12.35014. URL http://dx.doi.org/10.1117/12.35014
  6. 6.
    Grant, I., Liu, A.: Directional ambiguity resolution in particle image velocimetry by pulse tagging. Exp. Fluids 10(2–3), 71–76 (1990). DOI 10.1007/BF00215013. URL http://dx.doi.org/10.1007/BF00215013
  7. 7.
    Landreth, C.C., Adrian, R.J.: Electrooptical image shifting for particle image velocimetry. Appl. Opt. 27(20), 4216–4220 (1988). DOI 10.1364/AO.27.004216. URL http://ao.osa.org/abstract.cfm?URI=ao-27-20-4216
  8. 8.
    Landreth, C.C., Adrian, R.J., Yao, C.S.: Double pulsed particle image velocimeter with directional resolution for complex flows. Exp. Fluids 6(2), 119–128 (2004). DOI 10.1007/BF00196463. URL http://dx.doi.org/10.1007/BF00196463
  9. 9.
    Lourenço, L.M., Gogineni, S.P., LaSalle, R.T.: On-line particle-image velocimeter: an integrated approach. Appl. Opt. 33(13), 2465–2470 (1994). DOI 10.1364/AO.33.002465. URL http://ao.osa.org/abstract.cfm?URI=ao-33-13-2465
  10. 10.
    Raffel, M., Kompenhans, J.: Theoretical and experimental aspects of image-shifting by means of a rotating mirror system for particle image velocimetry. Meas. Sci. Technol. 6(6), 795 (1995). DOI 10.1088/0957-0233/6/6/016. URL http://stacks.iop.org/0957-0233/6/i=6/a=016
  11. 11.
    Turko, B.T., Yates, G.J., King, N.S.P.: Processing of multiport CCD video signals at very high frame rates. In: Cha, S.S., Trolinger, J.D. (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2549, pp. 11–15 (1995). DOI 10.1117/12.218305. URL http://dx.doi.org/10.1117/12.218305
  12. 12.
    Vogt, A., Baumann, P., Kompenhans, J., Gharib, M.: Investigations of a wing tip vortex in air by means of DPIV. In: Advanced Measurement and Ground Testing Conference, New Orleans, LA, 17-20 June. American Institute of Aeronautics and Astronautics (1996). DOI 10.2514/6.1996-2254. URL https://dx.doi.org/10.2514/6.1996-2254
  13. 13.
    Willert, C.E., Raffel, M., Stasicki, B., Kompenhans, J.: High-speed digital video camera systems and related software for application of PIV in wind tunnel flows. In: 8th Intern. Symp. on Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July (1996)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations