Physical and Technical Background

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


The choice of an appropriate tracer is of paramount importance for the success of a PIV experiment. This chapter guides the choice by giving a description of the physical mechanisms governing the motion of tracer particles in the flow. The discussion covers seeding particle generation techniques and their supply into the flow facility from water experiments to aerodynamics and compressible reactive flows. The properties of HFSB tracers are given a specific attention, given their recent introduction for PIV experiments at large scale. The light scattering properties of the tracer particles are of equal importance. The chapter presents the most used physical models to predict the amount of light scattered by the tracers. The fundamental properties of Lasers as the most used devices to illuminate the seeded flow are treated. The discussion includes the properties of emitted light pulses, low- and high-repetition rate systems, light transmission optics and methods of light sheet formation. The growing number of experiments with volume illumination justifies an expanded discussion on the working principles of LED illumination as an alternative approach to Lasers. Digital imaging systems needed to record the scattered light intensity from the particles are described from their working principle, electronic architecture and operating modes. The most relevant differences between CCD and CMOS imagers are explained guiding the choice to the most suited imager for a given experiment. The discussion includes the most recent developments in this domain with the sCMOS architecture.


  1. 1.
    Adrian, R.J., Yao, C.S.: Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24(1), 44–52 (1985). DOI 10.1364/AO.24.000044. URL
  2. 2.
    Beskok, A., Karniadakis, G., Trimmer, W.: Rarefaction and compressibility effects in gas microflows. ASME. J. Fluids Eng. 118(3), 448–456 (1996). DOI 10.1115/1.2817779. URL
  3. 3.
  4. 4.
    Bosbach, J., Kühn, M., Wagner, C.: Large scale particle image velocimetry with helium filled soap bubbles. Exper. Fluids 46(3), 539–547 (2009). DOI 10.1007/s00348-008-0579-0. URL
  5. 5.
    Bröder, D., Sommerfeld, M.: Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol. 18(8), 2513 (2007). DOI 10.1088/0957-0233/18/8/028. URL
  6. 6.
    Bryanston-Cross, P.J., Epstein, A.: The application of sub-micron particle visualisation for PIV (particle image velocimetry) at transonic and supersonic speeds. Progr. Aerosp. Sci. 27(3), 237–265 (1990). DOI 10.1016/0376-0421(90)90008-8. URL
  7. 7.
    Buchmann, N.A., Willert, C.E., Soria, J.: Pulsed, high-power LED illumination for tomographic particle image velocimetry. Exper. Fluids 53(5), 1545–1560 (2012). DOI 10.1007/s00348-012-1374-5. URL
  8. 8.
    Caridi, G.C.A., Sciacchitano, A., Scarano, F.: Helium-filled soap bubbles for vortex core velocimetry. Exper. Fluids 58, 130 (2017). DOI 10.1007/s00348-017-2415-x. URL
  9. 9.
    Chen, F., Liu, H., Rong, Z.: Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA (2012). DOI 10.2514/6.2012-36. URL
  10. 10.
    Chételat, O., Kim, K.C.: Miniature particle image velocimetry system with LED in-line illumination. Meas. Sci. Technol. 13(7), 1006 (2002). DOI 10.1088/0957-0233/13/7/306. URL
  11. 11.
    Cummings, E.B.: An image processing and optimal nonlinear filtering technique for particle image velocimetry of microflows. Exper. Fluids 29(1), S042–S050 (2000). DOI 10.1007/s003480070006. URL
  12. 12.
    Dabiri, D.: Digital particle image thermometry/velocimetry: a review. Exper. Fluids 46(2), 191–241 (2009). DOI 10.1007/s00348-008-0590-5. URL
  13. 13.
    Echols, W.H., Young, J.A.: Studies of portable air-operated aerosol generators. Technical report, NRL Report 5929, Naval Research Laboratory, Washington D.C (1963)Google Scholar
  14. 14.
    Einstein, A.: On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Annalen der Physik (Leipzig) 17, 549–560 (1905). DOI 10.1002/andp.19053220806. URL
  15. 15.
    Estevadeordal, J., Goss, L.: PIV with LED: Particle shadow velocimetry (PSV). In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (USA), pp. 12,355–12,364 (2005). DOI 10.2514/6.2005-5009. URL
  16. 16.
    Ghaemi, S., Scarano, F.: Multi-pass light amplification for tomographic particle image velocimetry applications. Meas. Sci. Technol. 21(12), 127,002 (2010). DOI 10.1088/0957-0233/21/12/127002. URL
  17. 17.
    Ghaemi, S., Schmidt-Ott, A., Scarano, F.: Nanostructured tracers for laser-based diagnostics in high-speed flows. Meas. Sci. Technol. 21(10), 105,403 (2010). DOI 10.1088/0957-0233/21/10/105403. URL
  18. 18.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson (2018). URL
  19. 19.
    Goodman, J.W.: Introduction to Fourier Optics, 4th edn. Macmillan Learning (2017). URL
  20. 20.
    Hagsäter, S.M., Westergaard, C.H., Bruus, H., Kutter, J.P.: Investigations on LED illumination for micro-PIV including a novel front-lit configuration. Exper. Fluids 44(2), 211–219 (2008). DOI 10.1007/s00348-007-0394-z. URL
  21. 21.
    Hain, R., Kähler, C.J., Tropea, C.: Comparison of CCD. CMOS and intensified cameras. Exper. Fluids 42(3), 403–411 (2007). DOI 10.1007/s00348-006-0247-1. URL
  22. 22.
    Hand, D.P., Entwistle, J.D., Maier, R.R.J., Kuhn, A., Greated, C.A., Jones, J.D.C.: Fibre optic beam delivery system for high peak power laser PIV illumination. Meas. Sci. Technol. 10(3), 239 (1999). URL
  23. 23.
    Hecht, E., Zajac, A.: Optics. Addison-Wesley Pub. Company, Massachusetts (2001)Google Scholar
  24. 24.
    Höcker, R., Kompenhans, J.: Application of particle image velocimetry to transonic flows. In: Adrian, R.J., Durao, D., Durst, F., Maeda, M., Whitelaw, J.H. (eds.) Applications of Laser Techniques to Fluid Mechanics: 5th International Symposium Lisbon, Portugal, 9–12 July, 1990, pp. 416–434. Springer, New York (1991)Google Scholar
  25. 25.
    Hsu, P.S., Roy, S., Jiang, N., Gord, J.R.: Large-aperture, tapered fiber-coupled, 10-khz particle-image velocimetry. Opt. Express 21(3), 3617–3626 (2013). DOI 10.1364/OE.21.003617. URL
  26. 26.
    van de Hulst, H.C.: Light Scattering by Small Particles. Wiley, Inc., New York (republished 1981 by Dover Publications, New York) (1957)Google Scholar
  27. 27.
    Humphreys, W., Bartram, S., Blackshire, J.: A survey of particle image velocimetry applications in langley aerospace facilities. In: 31st Aerospace Sciences Meeting, January 11-14, Reno, NV. American Institute of Aeronautics and Astronautics (1993). DOI 10.2514/6.1993-411. URL
  28. 28.
    Hunter, W.W., Nichols, C.E.: Wind tunnel seeding systems for laser velocimeters. In: NASA Workshop, 19-20 March, NASA Langley Research Center, vol. NASA-CP-2393. NASA (1985). URL
  29. 29.
    Inoué, S., Spring, K.R.: Video Microscopy: The Fundamentals. Language of Science, 2nd edn. Springer, New York (1997)CrossRefGoogle Scholar
  30. 30.
    Kähler, C.J.: High Resolution Measurements by Long-range Micro-PIV. VKI Lecture Series: Recent Advances in Particle Image Velocimetry (2009). URL
  31. 31.
    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exper. Fluids 33(6), 736–742 (2002). DOI 10.1007/s00348-002-0492-x. URL
  32. 32.
    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. In: M. Stanislas, J. Westerweel, J. Kompenhans (eds.) Particle Image Velocimetry: Recent Improvements, pp. 417–426. Springer, Berlin (2004). DOI 10.1007/978-3-642-18795-7_30. URL
  33. 33.
    Kompenhans, J., Raffel, M.: Application of PIV technique to transonic flows in a blow-down wind tunnel. In: S.S. Cha, J.D. Trolinger (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2005, pp. 425–436 (1993). DOI 10.1117/12.163727. URL
  34. 34.
    Kühn, M., Ehrenfried, K., Bosbach, J., Wagner, C.: Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exper. Fluids 50(4), 929–948 (2011). DOI 10.1007/s00348-010-0947-4. URL
  35. 35.
    Lauterborn, W., Kurz, T.: Coherent Optics - Fundamentals and Applications, 2nd edn. Springer, Berlin (2003). DOI 10.1007/978-3-662-05273-0. URL
  36. 36.
    Lindken, R., Merzkirch, W.: A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows. Exper. Fluids 33(6), 814–825 (2002). DOI 10.1007/s00348-002-0500-1. URL
  37. 37.
    Lourenço, L.M.: Some comments on particle image displacement velocimetry. In: Particle Image Displacement Velocimetry, von Karman Lecture Series 1988-06. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1988)Google Scholar
  38. 38.
    Machacek, M.: A quantitative visualization tool for large wind tunnel experiments. Ph.D. thesis, ETH Zürich (2003)Google Scholar
  39. 39.
    Meinhart, C.D., Wereley, S.T.: The theory of diffraction-limited resolution in microparticle image velocimetry. Meas. Sci. Technol. 14(7), 1047 (2003). DOI 10.1088/0957-0233/14/7/320. URL
  40. 40.
    Meinhart, C.D., Wereley, S.T., Gray, M.H.B.: Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Technol. 11(6), 809 (2000). DOI 10.1088/0957-0233/11/6/326. URL
  41. 41.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exper. Fluids 27(5), 414–419 (1999). DOI 10.1007/s003480050366. URL
  42. 42.
    Melling, A.: Seeding gas flows for laser anemometry. In: AGARD Conference on Advanced Instrumentation for Aero Engine Components, 19–23 May, Philadelphia (USA), AGARD-CP 399-8 (1986)Google Scholar
  43. 43.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8(12), 1406 (1997). DOI 10.1088/0957-0233/8/12/005. URL
  44. 44.
    Meyers, J.: Generation of particles and seeding. In: Laser Velocimetry, von Karman Institute for Fluid Dynamics Lecture Series 1991-08, vol. 8. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1991)Google Scholar
  45. 45.
    Minsky, M.: Microscopy apparatus (1961). US Patent 3,013,467Google Scholar
  46. 46.
    Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988). DOI 10.1002/sca.4950100403. URL
  47. 47.
    Molezzi, M.J., Dutton, J.C.: Application of particle image velocimetry in high-speed separated flows. AIAA J. 31(3), 438–446 (1993). DOI 10.2514/3.113490. URL
  48. 48.
    Nogueira, S., Sousa, R.G., Pinto, A.M.F.R., Riethmuller, M.L., Campos, J.B.L.M.: Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems. Exper. Fluids 35(6), 598–609 (2003). DOI 10.1007/s00348-003-0708-8. URL
  49. 49.
    Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exper. Fluids 29(1), S166–S174 (2000). DOI 10.1007/s003480070018. URL
  50. 50.
    van Oudheusden, B.W., Scarano, F.: PIV Investigation of Supersonic Base-Flow–Plume Interaction, pp. 465–474. Springer, Berlin (2008). DOI 10.1007/978-3-540-73528-1_25. URL
  51. 51.
    Probstein, R.: Physicochemical Hydrodynamics: An Introduction, 2nd edn. Wiley (2003). URL
  52. 52.
    Ragni, D., Schrijer, F., van Oudheusden, B.W., Scarano, F.: Particle tracer response across shocks measured by PIV. Exper. Fluids 50(1), 53–64 (2011). DOI 10.1007/s00348-010-0892-2. URL
  53. 53.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Pure and Applied Physics, 2nd edn. Wiley, Inc. (2007). DOI 10.1002/0471213748. URL
  54. 54.
    Samimy, M., Lele, S.K.: Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3(8), 1915–1923 (1991). DOI 10.1063/1.857921. URL
  55. 55.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exper. Fluids 25(4), 316–319 (1998). DOI 10.1007/s003480050235. URL
  56. 56.
    Scarano, F.: Overview of PIV in Supersonic Flows, pp. 445–463. Springer, Berlin (2008). DOI 10.1007/978-3-540-73528-1_24. URL
  57. 57.
    Scarano, F., Ghaemi, S., Caridi, G.C.A., Bosbach, J., Dierksheide, U., Sciacchitano, A.: On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exper. Fluids 56(2), 42 (2015). DOI 10.1007/s00348-015-1909-7. URL
  58. 58.
    Scarano, F., van Oudheusden, B.W.: Planar velocity measurements of a two-dimensional compressible wake. Exper. Fluids 34(3), 430–441 (2003). DOI 10.1007/s00348-002-0581-x. URL
  59. 59.
    Schneiders, J.F.G., Caridi, G.C.A., Sciacchitano, A., Scarano, F.: Large-scale volumetric pressure from tomographic PTV with HFSB tracers. Exper. Fluids 57(11), 164 (2016). DOI 10.1007/s00348-016-2258-x. URL
  60. 60.
    Schrijer, F.F.J., Scarano, F., van Oudheusden, B.W.: Application of PIV in a Mach 7 double-ramp flow. Exper. Fluids 41(2), 353–363 (2006). DOI 10.1007/s00348-006-0140-y. URL
  61. 61.
    Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F., Dierksheide, U.: Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exper. Fluids 44(2), 305–316 (2008). DOI 10.1007/s00348-007-0403-2. URL
  62. 62.
    Sinha, S.K.: Improving the accuracy and resolution of particle image or laser speckle velocimetry. Exper. Fluids 6(1), 67–68 (1988). DOI 10.1007/BF00226137. URL
  63. 63.
    Solf, K.D.: Fotografie: Grundlagen, Technik, Praxis. Fischer-Handbücher. 6034. Fischer-Taschenbuch-Verlag (1978)Google Scholar
  64. 64.
    Stanislas, M., Okamoto, K., Kähler, C.J.: Main results of the first international PIV challenge. Meas. Sci. Technol. 14(10), R63 (2003). DOI 10.1088/0957-0233/14/10/201. URL
  65. 65.
    Towers, C.E., Bryanston-Cross, P.J., Judge, T.R.: Application of particle image velocimetry to large-scale transonic wind tunnels. Opt. Laser Technol. 23, 289–295 (1991). DOI 10.1016/0030-3992(91)90007-B. URL Scholar
  66. 66.
    Urban, W.D., Mungal, M.G.: Planar velocity measurements in compressible mixing layers. J. Fluid Mech. 431, 189–222 (2001). DOI 10.1017/S0022112000003177. URL
  67. 67.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier Science, North-Holland Personal Library (2011)MATHGoogle Scholar
  68. 68.
    Wereley, S.T., Meinhart, C.D.: Micron-resolution particle image velocimetry. In: K.S. Breuer (ed.) Microscale Diagnostic Techniques, pp. 51–112. Springer, Berlin (2005). DOI 10.1007/3-540-26449-3_2. URL
  69. 69.
    Wernet, J.H., Wernet, M.P.: Stabilized alumina/ethanol colloidal dispersion for seeding high temperature air flows. In: ASME Symposium on Laser Anemometry: Advances and Applications, 19–23 June, Lake Tahoe, Nevada (USA) (1994). URL
  70. 70.
    Wernet, M.P., Hadley, J.A.: A high temperature seeding technique for particle image velocimetry. Meas. Sci. Technol. 27(12), 125,201 (2016). DOI 10.1088/0957-0233/27/12/125201. URL
  71. 71.
    Willert, C.E., Hassa, C., Stockhausen, G., Jarius, M., Voges, M., Klinner, J.: Combined PIV and DGV applied to a pressurized gas turbine combustion facility. Meas. Sci. Technol. 17(7), 1670 (2006). DOI 10.1088/0957-0233/17/7/005. URL
  72. 72.
    Willert, C.E., Jarius, M.: Planar flow field measurements in atmospheric and pressurized combustion chambers. Exper. Fluids 33(6), 931–939 (2002). DOI 10.1007/s00348-002-0515-7. URL
  73. 73.
    Willert, C.E., Stasicki, B., Klinner, J., Moessner, S.: Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21(7), 075402 (2010). DOI 10.1088/0957-0233/21/7/075402. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations