Skip to main content

Related Techniques

  • Chapter
  • First Online:

Abstract

As noted in Sect.1.3, PIV developed from Laser Speckle Interferometry. Therefore, one of the early names for this technique was ‘Laser Speckle Velocimetry’ before ‘Particle Image Velocimetry’ was established. The Laser Speckle Interferometry (or Laser Speckle Photography) was mainly developed for the determination of displacement and strain in engineering structures. The laser speckles are created due to random interference of scattered light from an optically rough surface illuminated by coherent light.

An overview of the Digital Content to this chapter can be found at [DC19.1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The German word “Schliere” designates a local optical inhomogeneity in a transparent medium.

  2. 2.

    The text on blade tip vortex investigation has been contributed by André Bauknecht.

  3. 3.

    The text on cylinder wake flows has been contributed by Hugoes Richard.

References

  1. Asundi, A., Chiang, F.P.: Theory and applications of the white light speckle method for strain analysis. Opt. Eng. 21(4), 214570 (1982). DOI 10.1117/12.7972953. URL http://doi.org/10.1117/12.7972953

  2. Bagai, A., Leishman, J.G.: Flow visualization of compressible vortex structures using density gradient techniques. Exp. Fluids 15(6), 431–442 (1993). DOI 10.1007/BF00191786. URL https://doi.org/10.1007/BF00191786

  3. Bauknecht, A., Ewers, B., Wolf, C., Leopold, F., Yin, J., Raffel, M.: Three-dimensional reconstruction of helicopter blade-tip vortices using a multi-camera bos system. Exp. Fluids 56(1), 1–13 (2014). DOI 10.1007/s00348-014-1866-6

    Google Scholar 

  4. Bauknecht, A., Merz, C.B., Raffel, M.: Airborne visualization of helicopter blade tip vortices. J. Vis. 20(1), 139–150 (2016). DOI 10.1007/s12650-016-0389-z. URL http://link.springer.com/10.1007/s12650-016-0389-z

  5. Burch, J.M., Tokarski, J.M.J.: Production of multiple beam fringes from photographic scatterers. Opt. Acta: Int. J. Opt. 15(2), 101–111 (1968). DOI 10.1080/713818071. URL https://www.tandfonline.com/10.1080/713818071

  6. Chu, T.C., Ranson, W.F., Sutton, M.A.: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985). DOI 10.1007/BF02325092. URL https://doi.org/10.1007/BF02325092

  7. Daly, S.H.: Digital image correlation in experimental mechanics for aerospace materials and structures. Encycl. Aerosp. Eng. (2010). DOI 10.1002/9780470686652.eae542. URL https://doi.org/10.1002/9780470686652.eae542

  8. Dalziel, S.B., Hughes, G.O., Sutherland, B.R.: Whole-field density measurements by ’synthetic schlieren’. Exp. Fluids 28(4), 322–335 (2000). DOI 10.1007/s003480050391. URL https://doi.org/10.1007/s003480050391

  9. Debrus, S., Françon, M., Grover, C.P., May, M., Roblin, M.L.: Ground glass differential interferometer. Appl. Opti. 11(4), 853–857 (1972). DOI 10.1364/AO.11.000853. URL http://ao.osa.org/abstract.cfm?URI=ao-11-4-853

  10. Dorić, S.: Ray tracing through gradient-index media: recent improvements. Appl. Opt. 29(28), 4026–4029 (1990). DOI 10.1364/AO.29.004026. URL https://doi.org/10.1364/AO.29.004026

  11. van der Draai, R.K., van Schinkel, R.P.M., Telesca, A.: A new approach to measuring model deflection. In: 18th International Congress on Instrumentation in Aerospace Simulation Facilities, 1999. ICIASF 99, pp. 33/1–33/7 (1999). DOI 10.1109/ICIASF.1999.827173. URL https://doi.org/10.1109/ICIASF.1999.827173

  12. Goldhahn, E., Seume, J.: The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp. Fluids 43(2–3), 241–249 (2007). DOI 10.1007/s00348-007-0331-1. URL https://doi.org/10.1007/s00348-007-0331-1

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, UK (2004). DOI 10.1017/CBO9780511811685. URL https://doi.org/10.1017/CBO9780511811685

  14. Kindler, K., Goldhahn, E., Leopold, F.: Recent developments in background oriented Schlieren methods for rotor blade tip vortex measurements. Exp. Fluids 43(2–3), 233–240 (2007). DOI 10.1007/s00348-007-0328-9. URL https://doi.org/10.1007/s00348-007-0328-9

  15. Kirmse, T.: Recalibration of a stereoscopic camera system for in-flight wing deformation measurements. Meas. Sci. Technol. 27(5), 054,001 (2016). DOI 10.1088/0957-0233/27/5/054001. URL http://stacks.iop.org/0957-0233/27/i=5/a=054001

  16. Köpf, U.: Application of speckling for measuring the deflection of laser light by phase objects. Optic. Commun. 5(5), 347–350 (1972). DOI 10.1016/0030-4018(72)90030-2. URL http://www.sciencedirect.com/science/article/pii/0030401872900302

  17. Li, L.G., Liang, J., Guo, X., Guo, C., Hu, H., Tang, Z.Z.: Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation. Meas. Sci. Technol. 25(6), 065–202 (2014). DOI 10.1088/0957-0233/25/6/065202. URL https://doi.org/10.1088/0957-0233/25/6/065202

  18. Mandella, M., Bershader, D.: Quantitative study of the compressible vortex: Generation, structure and interaction with airfoils. In: 25th AIAA Aerospace Sciences Meeting (1987). DOI 10.2514/6.1987-328. URL http://doi.org/10.2514/6.1987-328. AIAA Paper 87-328

  19. Merzkirch, W.: Flow Visualization, 1st edn. Academic Press, New York (1974)

    MATH  Google Scholar 

  20. Merzkirch, W.: Flow Visualization, 2nd edn. Academic Press, New York (1987). URL http://www.sciencedirect.com/science/book/9780124913516

  21. Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 17 (2009). DOI 10.1088/0957-0233/20/6/062001. URL http://stacks.iop.org/0957-0233/20/i=6/a=062001

  22. Raffel, M.: Background-oriented schlieren (BOS) techniques. Exp. Fluids 56(3), 1–17 (2015). DOI 10.1007/s00348-015-1927-5. URL https://doi.org/10.1007/s00348-015-1927-5

  23. Raffel, M., Richard, H., Meier, G.E.A.: On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 28(5), 477–481 (2000). DOI 10.1007/s003480050408. URL https://doi.org/10.1007/s003480050408

  24. Raffel, M., Tung, C., Richard, H., Yu, Y., Meier, G.E.A.: Background oriented stereoscopic schlieren (boss) for full scale helicopter vortex characterization. In: 9th International Symposium on Flow Visualization, pp. 23–24 (2000)

    Google Scholar 

  25. Rastogi, P.K.: Digital Speckle Pattern Interferometry and Related Techniques, vol. 1. Wiley, New York (2000)

    Google Scholar 

  26. Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12(9), 1576 (2001). DOI 10.1088/0957-0233/12/9/325. URL http://stacks.iop.org/0957-0233/12/i=9/a=325

  27. Settles, G.S.: Schlieren and shadowgraph imaging in the great outdoors. In: PSFVIP-2 Schlieren and Shadowgraph Techniques; Visualizing Phenomena in Transparent Media, Honolulu (USA) (1999)

    Google Scholar 

  28. Sharma, A., Kumar, D.V., Ghatak, A.K.: Tracing rays through graded-index media: a new method. Appl. Opt. 21(6), 984–987 (1982). DOI 10.1364/AO.21.000984. URL http://ao.osa.org/abstract.cfm?URI=ao-21-6-984

  29. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R.: Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1(3), 133–139 (1983). DOI 10.1016/0262-8856(83)90064-1. URL https://doi.org/10.1016/0262-8856(83)90064-1

  30. Viktin, D., Merzkirch, W.: Speckle-photographic measurements of unsteady flow processes using a highspeed CCD camera. In: 8th International Symposium on Flow Visualization, Sorrento (1998)

    Google Scholar 

  31. Weinstein, L.M.: Large field schlieren visualization – from wind tunnels to flight. J. Vis. 2(3), 321–329 (2000). URL http://ci.nii.ac.jp/naid/10004572903/en/

  32. Wernekinck, U., Merzkirch, W.: Speckle photography of spatially extended refractive-index fields. Appl. Opt. 26(1), 31–32 (1987). DOI 10.1364/AO.26.000031. URL http://ao.osa.org/abstract.cfm?URI=ao-26-1-31

  33. Withers, P.J.: Strain measurement by digital image correlation. Strain 44(6), 421–422 (2008). DOI 10.1111/j.1475-1305.2008.00556.x. URL https://doi.org/10.1111/j.1475-1305.2008.00556.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Raffel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T., Kompenhans, J. (2018). Related Techniques. In: Particle Image Velocimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-68852-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68852-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68851-0

  • Online ISBN: 978-3-319-68852-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics