Applications: Stereo PIV and Multiplane Stereo PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

The various methods of image reconstruction and calibration as described in Sect. 8.1 were applied in the measurement of the unsteady vortex ring flow field in 1995. Figure 11.125 outlines a vortex ring generator having a simple construction with very reproducible flow characteristics. The vortex ring is generated by discharging a bank of electrolytic capacitors (\(60\,000\,\upmu \text {F}\)) through a pair of loudspeakers which are mounted facing inward on to two sides of a wooden box. By forcing the loudspeaker membranes inward, air is impulsively forced out of a cylindrical, sharpened nozzle (inner diameter \(=34.7\,\text {mm}\)) on the top of the box. The shear layer formed at the tip of the nozzle then rolls up into a vortex ring and separates from the nozzle as the membranes move back to their equilibrium positions due to the decay in supply voltage. As long as the charging voltage is kept constant, the formation of the vortex ring will be very reproducible. The generator also has a seeding pipe with a check valve allowing the interior of the box and ultimately the core of the vortex ring to be seeded.

References

  1. 1.
    Braud, C., Heitz, D., Braud, P., Arroyo, G., Delville, J.: Analysis of the wake-mixing-layer interaction using multiple plane PIV and 3D classical POD. Exp. Fluids 37(1), 95–104 (2004). DOI 10.1007/s00348-004-0789-z. URL  https://doi.org/10.1007/s00348-004-0789-z
  2. 2.
    Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143–188 (2005). DOI 10.1017/S0022112005004751. URL  https://doi.org/10.1017/S0022112005004751
  3. 3.
    Hain, R., Kähler, C.J.: Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42(4), 575–587 (2007). DOI 10.1007/s00348-007-0266-6. URL  https://doi.org/10.1007/s00348-007-0266-6
  4. 4.
    Hu, H., Saga, T., Kobayashi, T., Taniguchi, N., Yasuki, M.: Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed jet mixing flow. Exp. Fluids 31(3), 277–293 (2001). DOI 10.1007/s003480100283. URL  https://doi.org/10.1007/s003480100283
  5. 5.
    Jakobsen, M.L., Dewhirst, T.P., Greated, C.A.: Particle image velocimetry for predictions of acceleration fields and force within fluid flows. Meas. Sci. Technol. 8(12), 1502 (1997). DOI 10.1088/0957-0233/8/12/013. URL https://stacks.iop.org/0957-0233/8/i=12/a=013
  6. 6.
    Kähler, C.J.: Multiplane stereo PIV–recording and evaluation methods. In: EUROMECH 411: Application of PIV to turbulence measurements, University of Rouen (France) (2000)Google Scholar
  7. 7.
    Kähler, C.J.: General design and operating rules for seeding atomisers. In: 5th International Symposium on Particle Image Velocimety, Busan (Korea) (2003)Google Scholar
  8. 8.
    Kähler, C.J.: Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp. Fluids 36(1), 114–130 (2004). DOI 10.1007/s00348-003-0680-3. URL https://doi.org/10.1007/s00348-003-0680-3
  9. 9.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Ph.D. thesis, Georg-August-University zu Göttingen (Germany) (2004). URL http://hdl.handle.net/11858/00-1735-0000-0006-B4C8-8. DLR-FB-2004-24
  10. 10.
    Kähler, C.J.: The significance of turbulent eddies for the mixing in boundary layers. In: IUTAM Symposium “One Hundred Years of Boundary Layer Research”, Göttingen (Germany) (2004)Google Scholar
  11. 11.
    Kähler, C.J., Kompenhans, J.: Multiple plane stereo PIV – technical realization and fluid-mechanical significance. In: 3rd International Workshop on PIV, Santa Barbara (USA) (1999)Google Scholar
  12. 12.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000). DOI 10.1007/s003480070009. URL  https://doi.org/10.1007/s003480070009
  13. 13.
    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 33(6), 736–742 (2002). DOI 10.1007/s00348-002-0492-x. URL  https://doi.org/10.1007/s00348-002-0492-x
  14. 14.
    Kähler, C.J., Stanislas, M., Dewhirst, T., Carlier, J.: Investigation of the spatio-temporal flow structure in the log-law region of a turbulent boundary layer by means of multi-plane stereo particle image velocimetry. In: Laser Techniques for Fluid Mechanics, pp. 39–53. Springer, Berlin (2002). DOI 10.1007/978-3-662-08263-8_3. URL https://doi.org/10.1007/978-3-662-08263-8_421_3
  15. 15.
    Mullin, J.A., Dahm, W.J.A.: Direct experimental measurements of velocity gradient fields in turbulent flows via high-resolution frequency-based dual-plane stereo PIV (DSPIV). In: 12th International Symposium on the Applications of Laer Techniques to Fluid Mechanics, Lisbon (Portugal) (2004). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2004/pdf/paper_16_1.pdf
  16. 16.
    Mullin, J.A., Dahm, W.J.A.: Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows. Exp. Fluids 38(2), 185–196 (2005). DOI 10.1007/s00348-004-0898-8. URL  https://doi.org/10.1007/s00348-004-0898-8

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations