Applications: Flows at Different Temperatures

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


These experimental investigations of flows by means of PIV have been carried out in 1996 by DLR in cooperation with the Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, in order to complete their numerical simulations and LDV measurements.


  1. 1.
    Abram, C., Fond, B., Beyrau, F.: High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles. Opt. Express 23(15), 19453–19468 (2015). DOI 10.1364/OE.23.019453. URL
  2. 2.
    Benard, N., Moreau, E.: Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55(11), 1846 (2014). DOI 10.1007/s00348-014-1846-x. URL
  3. 3.
    Böhm, C., Wulf, P., Egbers, C., Rath, H.J.: LDV- and PIV-measurements on the dynamics in spherical Couette flow. In: International Conference on Laser Anemometry - Advances and Applications, Karlsruhe, (Germany) (1997)Google Scholar
  4. 4.
    Boucinha, V., Magnier, P., Weber, R., Leroy-Chesneau, A., Dong, B., Hong, D., Joussot, R.: Characterization of the ionic wind induced by a sine DBD actuator used for laminar-to-turbulent transition delay. In: 4th Flow Control Conference Seattle, Washington, vol. AIAA 2008-4210 (2008). DOI 10.2514/6.2008-4210. URL
  5. 5.
    Dabiri, D.: Digital particle image thermometry/velocimetry: a review. Exp. Fluids 46(2), 191–241 (2009). DOI 10.1007/s00348-008-0590-5. URL
  6. 6.
    Elliott, G.S., Beutner, T.J.: Molecular filter based planar Doppler velocimetry. Prog. Aerosp. Sci. 35(8), 799–845 (1999). DOI 10.1016/S0376-0421(99)00008-1. URL
  7. 7.
    Garg, V.K.: Natural convection between concentric spheres. Int. J. Heat Mass Transf. 35(8), 1935–1945 (1992). DOI 10.1016/0017-9310(92)90196-Y. URL
  8. 8.
    Hiller, W., Kowalewski, T.: Simultaneous measurement of temperature and velocity fields in thermal convective flows. In: 4th International Symposium on Flow Visualization. Paris, France (1986)Google Scholar
  9. 9.
    Honoré, D., Maurel, S., Quinqueneau: Particle image velocimetry in a semi-industrial 1 MW boiler. In: 4th International Symposium on Particle Image Velocimetry, Göttingen (Germany) (2001)Google Scholar
  10. 10.
    Konrath, R.: Tracking the nacelle vortex above aircraft wing in the ETW at real Mach-and Reynolds numbers by means of PIV. In: 53rd AIAA Aerospace Sciences Meeting, p. 1560 (2015). DOI 10.2514/6.2015-1560. URL
  11. 11.
    Konrath, R., Geisler, R., Otter, D., Philipp, F., Ehlers, H., Agocs, J., Quest, J.: High-speed PIV applied to the wake of the NASA CRM model in ETW at high Re-number stall conditions for sub- and transonic speeds. In: 53rd AIAA Aerospace Sciences Meeting, p. 1095 (2015). DOI 10.2514/6.2015-1095. URL
  12. 12.
    Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26(9), 092,001 (2015). DOI 10.1088/0957-0233/26/9/092001. URL
  13. 13.
    Kotsonis, M., Ghaemi, S., Veldhuis, L., Scarano, F.: Measurement of the body force field of plasma actuators. J. Phys. D: Appl. Phys. 44(4), 045,204 (2011). DOI 10.1088/0022-3727/44/4/045204. URL
  14. 14.
    Mack, L.R., Hardee, H.C.: Natural convection between concentric spheres at low Rayleigh numbers. Int. J. Heat Mass Transf. 11(3), 387–396 (1968). DOI 10.1016/0017-9310(68)90083-5. URL
  15. 15.
    Meier, U., Freitag, S., Heinze, J., Lange, L., Magens, E., Schroll, M., Willert, C., Hassa, C., Bagchi, I.K., Lazik, W., Whiteman, M.: Characterisation of lean burn module air blast pilot injector with laser techniques. In: ASME Turbo Expo: Power for Land, Sea, and Air, Volume 1A: Combustion, Fuels and Emissions (2013). DOI 10.1115/GT2013-94796. URL
  16. 16.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8(12), 1406 (1997). DOI 10.1088/0957-0233/8/12/005. URL
  17. 17.
    Roehle, I.: Three-dimensional Doppler global velocimetry in the flow of a fuel spray nozzle and in the wake region of a car. Flow Meas. Instrumen. 7(3–4), 287–294 (1996). DOI 10.1016/S0955-5986(97)00011-3. URL
  18. 18.
    Schiepel, D., Schmeling, D., Wagner, C.: Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined tomo-PIV and PIT. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 04-07 July (2016). URL
  19. 19.
    Schmeling, D., Bosbach, J.,Wagner, C.: Simultaneous measurement of temperature and velocityields in convective air ows. Measurement Science and Technology 25(3), 035,302 (2014). DOI 10.1088/0957-0233/25/3/035302. URL
  20. 20.
    Schmeling, D., Bosbach, J., Wagner, C.: Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV. Exp. Fluids 56(6), 134 (2015). DOI 10.1007/s00348-015-1981-z. URL
  21. 21.
    Wernet, M.P.: Planar particle imaging Doppler velocimetry: a hybrid PIV/DGV technique for three-component velocity measurements. Meas. Sci. Technol. 15(10), 2011 (2004). DOI 10.1088/0957-0233/15/10/011. URL
  22. 22.
    Willert, C.E., Hassa, C., Stockhausen, G., Jarius, M., Voges, M., Klinner, J.: Combined PIV and DGV applied to a pressurized gas turbine combustion facility. Meas. Sci. Technol. 17(7), 1670 (2006). DOI 10.1088/0957-0233/17/7/005. URL
  23. 23.
    Willert, C.E., Jarius, M.: Planar flow field measurements in atmospheric and pressurized combustion chambers. Exp. Fluids 33(6), 931–939 (2002). DOI 10.1007/s00348-002-0515-7. URL
  24. 24.
    Willert, C.E., Raffel, M., Stasicki, B., Kompenhans, J.: High-speed digital video camera systems and related software for application of PIV in wind tunnel flows. In: 8th International Symposium on Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July (1996)Google Scholar
  25. 25.
    Willert, C.E., Stasicki, B., Raffel, M., Kompenhans, J.: Digital video camera for application of particle image velocimetry in high-speed flows. In: Cha, S.S., Trolinger, J.D. (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2546, pp. 124–134 (1995). DOI 10.1117/12.221515. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations