Applications: Helicopter Aerodynamics

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


In this chapter a number of applications of the PIV technique will be described, contributed by leading PIV experts from different research establishments and universities worldwide. Primarily, the objective of presenting these applications is to show how the PIV technique has spread out to the most different research areas. However, it is of even higher importance to gain the reader access to a wide variety of ideas for PIV measurements by presenting many different applications in fundamental or industrial research. For each experiment the most important parameters of the object under investigation, of the illumination and recording setup, etc. will be given. These data together with the hints and tricks briefly described and the references to further, more detailed, literature may be useful for the reader when trying to solve problems of his own application.


  1. 1.
    Berton, E., Favier, D., Nsi Mba, M., Maresca, C., Allain, C.: Embedded LDV measurement methods applied to unsteady flow investigation. Exp. Fluids 30(1), 102–110 (2001). DOI 10.1007/s003480000144. URL
  2. 2.
    Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25(1), 6–17 (1988). DOI 10.2514/3.45534. URL
  3. 3.
    Degani, A.T., Walker, J.D.A., Smith, F.T.: Unsteady separation past moving surfaces. J. Fluid Mech. 375, 1–38 (1998). DOI 10.1017/S0022112098001839. URL
  4. 4.
    Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 1422 (2001). DOI 10.1088/0957-0233/12/9/307. URL
  5. 5.
    Green, M.A., Rowley, C.W., Haller, G.: Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111–120 (2007). DOI 10.1017/S0022112006003648. URL
  6. 6.
    Green, M.A., Rowley, C.W., Smits, A.J.: The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J. Fluid Mech. 685, 117–145 (2011). DOI 10.1017/jfm.2011.286. URL
  7. 7.
    Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos: an Interdiscip. J. Nonlinear Sci. 10(1), 99–108 (2000). DOI 10.1063/1.166479. URL
  8. 8.
    Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13(11), 3365 (2001). DOI 10.1063/1.1403336. URL
  9. 9.
    Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14(6), 1851 (2002). DOI 10.1063/1.1477449. URL
  10. 10.
    Heineck, J.T., Wadcock, A.J., Yamauchi, G.K., Lourenco, L., Abrego, A.I.: Application of three-component PIV to a hovering rotor wake. In: 56th Annual Forum of the American Helicopter Society, Virginia Beach (USA) (2000). URL
  11. 11.
    Ho, C.M.: An alternative look at the unsteady separation phenomenon. In: Krothapalli, A., Smith, C.A. (eds.) Recent Advances in Aerodynamics: Proceedings of an International Symposium held at Stanford University, August 22–26, 1983, pp. 165–178. Springer, New York (1986). DOI 10.1007/978-1-4612-4972-6/_4. URL
  12. 12.
    Huang, Y., Green, M.A.: Detection and tracking of vortex phenomena using Lagrangian coherent structures. Exp. Fluids 56(7), 147–158 (2015). DOI 10.1007/s00348-015-2001-z. URL
  13. 13.
    Kähler, C.J., Scholz, U.: Transonic jet analysis using long-distance micro-PIV. In: 12th International Symposium on Flow Visualization - ISFV 12, Göttingen, Germany (2006)Google Scholar
  14. 14.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL
  15. 15.
    Kato, H., Watanabe, S., Kondo, N., Saito, S.: Application of stereoscopic PIV to helicopter rotor blade tip vortices. In: 20th Congress on Instrumentation in Aerospace Simulation Facilities, Göttingen (Germany) (2003)Google Scholar
  16. 16.
    Lindken, R., Di Silvestro, F., Westerweel, J., Nieuwstadt, F.: Turbulence measurements with \(\mu \text{PIV}\) in large-scale pipe flow. In: 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2002)Google Scholar
  17. 17.
    Lumley, J.L.: Stochastic Tools in Turbulence. Dover Books on Engineering, Dover Publications (1970)Google Scholar
  18. 18.
    Martin, P.B., Pugliese, J.G., Leishman, J.G., Anderson, S.L.: Stereo PIV measurements in the wake of a hovering rotor. In: 56th Annual Forum of the American Helicopter Society, Virginia Beach (USA) (2000)Google Scholar
  19. 19.
    McAlister, K.W.: Rotor wake development during the first revolution. J. Am. Helicopter Soc. 49, 371–390 (2004). DOI 10.4050/JAHS.49.371. URL
  20. 20.
    McAlister, K.W., Carr, L.W., McCroskey, W.J.: Dynamic stall experiments on the NACA 0012 airfoil. Technical Report NASA Technical Paper 1100, NASA (1978)Google Scholar
  21. 21.
    McCroskey, W.J.: The phenomenon of dynamic stall. Technical Report NASA Technical Memorandum 81264, NASA (1981)Google Scholar
  22. 22.
    Mulleners, K., Raffel, M.: The onset of dynamic stall revisited. Exp. Fluids 52(3), 779–793 (2012). DOI 10.1007/s00348-011-1118-y. URL
  23. 23.
    Mulleners, K., Raffel, M.: Dynamic stall development. Exp. Fluids 54(2), 1469–1477 (2013). DOI 10.1007/s00348-013-1469-7. URL
  24. 24.
    Murashige, A., Kobiki, N., Tsuchihashi, A., Inagaki, K., Nakamura, H., Tsujiutchi, T., Hasegawa, Y., Yamamoto, Y., Yamakawa, E.: Second ATIC aeroacoustic model rotor test at DNW. In: 26th European Rotorcraft Forum, The Hague (the Netherlands) (2000)Google Scholar
  25. 25.
    Murashige, A., Kobiki, N., Tsuchihashi, A., Nakamura, H., Inagaki, K., Yamakawa, E.: ATIC aeroacoustic model rotor test at DNW. In: 24th European Rotorcraft Forum, Marseille (France) (1998)Google Scholar
  26. 26.
    Obabko, A.V., Cassel, K.W.: Detachment of the dynamic-stall vortex above a moving surface. AIAA J. 40(9), 1811–1822 (2002). DOI 10.2514/2.1858. URL
  27. 27.
    Raffel, M., Seelhorst, U., Willert, C.E.: Vortical flow structures at a helicopter rotor model measured by LDV and PIV. Aeronaut. J. 102(1014), 221 (1998). DOI 10.1017/S0001924000096391. URL
  28. 28.
    Raffel, M., Höfer, H., Kost, F., Willert, C.E., Kompenhans, J.: Experimental aspects of PIV measurements of transonic flow fields at a trailing edge model of a turbine blade. In: 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (1996)Google Scholar
  29. 29.
    Reynolds, W.C., Carr, L.W.: Review of Unsteady, Driven, Separated Flows, pp. 1–46. American Institute of Aeronautics and Astronautics (1985). DOI 10.2514/6.1985-527. DOI 10.2514/6.1985-527. URL
  30. 30.
    Richard, H., Raffel, M.: Full-scale and model tests. In: 58th Annual Forum of the American Helicopter Society, Montreal (Canada) (2002)Google Scholar
  31. 31.
    Richard, H., van der Wall, B.G.: Detailed investigation of rotor blade tip vortex in hover condition by 2C and 3C-PIV. In: 32nd European Rotorcraft Forum, Maastricht (the Netherlands) (2006)Google Scholar
  32. 32.
    Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D: Nonlinear Phenom. 212(3–4), 271–304 (2005). DOI 10.1016/j.physd.2005.10.007. URL
  33. 33.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45(3), 561–590 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Splettstößer, W.R., van der Wall, B.G., Junker, B., Schultz, K., Beaumier, P., Delrieux, Y., Leconte, P., Crozier, P.: The ERATO programme: Wind tunnel results and proof of design for an aeroacoustically optimized rotor. In: 25th European Rotorcraft Forum, Rome (Italy) (1999)Google Scholar
  35. 35.
    Vatistas, G.H., Kozel, V., Mih, W.C.: A simpler model for concentrated vortices. Exp. Fluids 11(1), 73–76 (1991). DOI 10.1007/BF00198434. URL
  36. 36.
    van der Wall, B.G., Junker, B., Yu, Y.H., Burley, C.L., Brooks, T.F., Tung, C., Raffel, M., Richard, H., Wagner, W., Mercker, E., Pengel, K., Holthusen, H., Beaumier, P., Delrieux, Y.: The HART II test in the LLF of the DNW - A major step towards rotor wake understanding. In: 28th European Rotorcraft Forum, Bristol (England) (2002)Google Scholar
  37. 37.
    van der Wall, B.G., Richard, H.: Analysis methodology for 3C PIV data. In: 31st European Rotorcraft Forum, Florence (Italy) (2005)Google Scholar
  38. 38.
    Yamauchi, G.K., Burley, C.L., Mercker, E., Pengel, K., Janakiram, R.: Flow measurements of an isolated model tilt rotor. In: 55th Annual Forum of the American Helicopter Society, Montreal (Canada) (1999)Google Scholar
  39. 39.
    Yu, Y.H.: The HART II test - rotor wakes and aeroacoustics with higher-harmonic pitch control (hhc) inputs - the joint German/French/Dutch/US project. In: 58th Annual Forum of the American Helicopter Society, Montreal (Canada) (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations