Applications: Transonic Flows

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

Solid surfaces in like actuators, fluid mechanical models and surrounding walls can influence the fluid flow and/or can be deformed or displaced by it. The knowledge of the actual surface shape and location is therefore important for many fluid mechanical investigations. In compressible fluids density variations is another important fluid parameter besides velocity. Both, the measurement of density gradients in a flow and the detection of the deformation and position of solid surfaces in contact with the fluid can be easily obtained based on PIV imaging hard- and software. The correlation based procedures for deformation, displacement, and strain analysis have been developed and applied more and more frequently during the past decade. The most common method, the deformation measurement by Digital Image Correlation (DIC) is described first together with examples of applications. The later section describes the theory of the Background-Oriented Schlieren Technique (BOS), which determines density gradients without using any sophisticated optical equipment. Practical aspect of the technique are addressed by the description of its application to a helicopter in hovering flight and to the transonic flow behind a cylinder.

References

  1. 1.
    Arunajatesan, S., Barone, M.F., Wagner, J.L., Casper, K.M., Beresh, S.J.: Joint experimental/computational investigation into the effects of finite width on transonic cavity flow. AIAA Pap. 3027 (2014). DOI 10.2514/6.2014-3027. URL  https://doi.org/10.2514/6.2014-3027
  2. 2.
    Beresh, S., Kearney, S., Wagner, J., Guildenbecher, D., Henfling, J., Spillers, R., Pruett, B., Jiang, N., Slipchenko, M., Mance, J., Roy, S.: Pulse-burst PIV in a high-speed wind tunnel. Meas. Sci. Technol. 26(9), 095,305 (2015). DOI 10.1088/0957-0233/26/9/095305. URL  https://doi.org/10.1088/0957-0233/26/9/095305
  3. 3.
    Beresh, S.J., Henfling, J.F., Spillers, R.W.: Planar velocimetry of a fin trailing vortex in subsonic compressible flow. AIAA J. 47(7), 1730–1740 (2009). DOI 10.2514/1.42097. URL  https://doi.org/10.2514/1.42097
  4. 4.
    Beresh, S.J., Henfling, J.F., Spillers, R.W.: Turbulence of a fin trailing vortex in subsonic compressible flow. AIAA J. 50(11), 2609–2622 (2012). DOI 10.2514/1.J051904. URL  https://doi.org/10.2514/1.J051904
  5. 5.
    Beresh, S.J., Smith, J.A., Henfling, J.F., Grasser, T.W., Spillers, R.W.: Interaction of a fin trailing vortex with a downstream control surface. J. Spacecr. Rockets 46(2), 318–328 (2009). DOI 10.2514/1.40294. URL  https://doi.org/10.2514/1.40294
  6. 6.
    Beresh, S.J., Wagner, J.L., Henfling, J.F., Spillers, R.W., Pruett, B.O.M.: Width effects in transonic flow over a rectangular cavity. AIAA J. 53(12), 3831–3834 (2015)CrossRefGoogle Scholar
  7. 7.
    Beresh, S.J., Wagner, J.L., Pruett, B., Spillers, R., McWithey, M., Gary, J., Chankaya, K.: Deployment of particle image velocimetry into the Lockheed Martin High Speed Wind Tunnel. In: 52nd Aerospace Sciences Meeting, p. 1238 (2014). DOI 10.2514/6.2014-1238. URL  https://doi.org/10.2514/6.2014-1238
  8. 8.
    Beresh, S.J., Wagner, J.L., Smith, B.L.: Self-calibration performance in stereoscopic PIV acquired in a transonic wind tunnel. Exp. Fluids 57(4), 1–17 (2016). DOI 10.1007/s00348-016-2131-y. URL  https://doi.org/10.1007/s00348-016-2131-y
  9. 9.
    Elsinga, G.E., van Oudheusden, B.W., Scarano, F.: Evaluation of aero-optical distortion effects in PIV. Exp. Fluids 39(2), 246–256 (2005). DOI 10.1007/s00348-005-1002-8. URL  https://doi.org/10.1007/s00348-005-1002-8
  10. 10.
    Fitzgerald, E.J., Mueller, T.J.: Measurements in a separation bubble on an airfoil using laser velocimetry. AIAA J. 28(4), 584–592 (1990). DOI 10.2514/3.10433. URL  https://doi.org/10.2514/3.10433
  11. 11.
    Förster, W., Karpinsky, G., Krain, H., Röhle, I., Schodl, R.: 3-component Doppler laser-two-focus velocimetry applied to a transonic centrifugal compressor. In: Laser Techniques for Fluid Mechanics, pp. 55–74. Springer, Berlin (2002). DOI 10.1007/978-3-662-08263-8_4. URL https://doi.org/10.1007/978-3-662-08263-8_4
  12. 12.
    Foucaut, J.M., Carlier, J., Stanislas, M.: Piv optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15(6), 1046 (2004). DOI 10.1088/0957-0233/15/6/003. URL  https://doi.org/10.1088/0957-0233/15/6/003
  13. 13.
    Göttlich, E., Neumayer, F., Woisetschläger, J., Sanz, W., Heitmeir, F.: Investigation of stator-rotor interaction in a transonic turbine stage using laser-doppler-velocimetry and pneumatic probes. In: ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, pp. 163–172. American Society of Mechanical Engineers (2003). DOI 10.1115/1.1649745. URL  https://doi.org/10.1115/1.1649745
  14. 14.
    Göttlich, E., Woisetschläger, J., Pieringer, P., Hampel, B., Heitmeir, F.: Investigation of vortex shedding and wake-wake interaction in a transonic turbine stage using laser-doppler-velocimetry and particle-image-velocimetry. J. Turbomach. 128(1), 178–187 (2006). DOI 10.1115/1.2103092. URL  https://doi.org/10.1115/1.2103092
  15. 15.
    Hannemann, K., Lüdeke, H., Pallegoix, J.F., Ollivier, A., Lambaré, H., Maseland, H., Geurts, E., Frey, M., Deck, S., Schrijer, F., Scarano, F., Schwane, R.: Launch vehicle base buffeting-recent experimental and numerical investigations. In: 7th European Symposium on Aerothermodynamics, Brugge, Belgium, vol. 692, p. 102 (2011)Google Scholar
  16. 16.
    Heineck, J.T., Schairer, E.T., Walker, S.M.: Piv measurements of flow past the space shuttle ascent configuration in the nasa ames 9-by 7-foot supersonic wind tunnel. In: Proceedings of the 6th International Symposium on Particle Image Velocimetry (PIV 2005), Pasadena, CA (2005)Google Scholar
  17. 17.
    Hergt, A., Klinner, J., Steinert, W., Grund, S., Beversdorff, M., Giebmanns, A., Schnell, R.: The effect of an eroded leading edge on the aerodynamic performance of a transonic fan blade cascade. J. Turbomach. 137(2), 021,006–021,006–11 (2014). DOI 10.1115/1.4028215. URL  https://doi.org/10.1115/1.4028215
  18. 18.
    Klinner, J., Hergt, A., Willert, C.E.: Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil. Exp. Fluids 55(9), 1800 (2014). DOI 10.1007/s00348-014-1800-y. URL  https://doi.org/10.1007/s00348-014-1800-y
  19. 19.
    Kompenhans, J., Raffel, M.: Application of PIV technique to transonic flows in a blow-down wind tunnel. In: Cha, S.S., Trolinger, J.D. (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2005, pp. 425–436 (1993). DOI 10.1117/12.163727. URL  https://doi.org/10.1117/12.163727
  20. 20.
    Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001). DOI 10.1016/S0376-0421(01)00003-3. URL https://www.sciencedirect.com/science/article/pii/S0376042101000033Google Scholar
  21. 21.
    Raffel, M., Höfer, H., Kost, F., Willert, C.E., Kompenhans, J.: Experimental aspects of PIV measurements of transonic flow fields at a trailing edge model of a turbine blade. In: 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (1996)Google Scholar
  22. 22.
    Raffel, M., Kompenhans, J.: PIV measurements of unsteady transonic flow fields above a NACA0012 airfoil. In: 5th International Conference on Laser Anemometry, Veldhoven (the Netherlands), pp. 527–535 (1993)Google Scholar
  23. 23.
    Ragni, D., Schrijer, F., van Oudheusden, B.W., Scarano, F.: Particle tracer response across shocks measured by PIV. Exp. Fluids 50(1), 53–64 (2011). DOI 10.1007/s00348-010-0892-2. URL  https://doi.org/10.1007/s00348-010-0892-2
  24. 24.
    Ray, J., Lefantzi, S., Arunajatesan, S., Dechant, L.: Bayesian parameter estimation of a k-\(\epsilon \) model for accurate jet-in-crossflow simulations. AIAA J. pp. 1–17 (2016). DOI 10.2514/1.J05 4758. URL  https://doi.org/10.2514/1.J054758
  25. 25.
    Scarano, F.: Overview of PIV in supersonic flows, pp. 445–463. Springer, Berlin (2008). DOI 10.1007/978-3-540-73528-1_24. URL  https://doi.org/10.1007/978-3-540-73528-1
  26. 26.
    Sciacchitano, A., Scarano, F.: Elimination of PIV light reflections via a temporal high pass filter. Meas. Sci. Technol. 25(8), 084,009 (2014). DOI 10.1088/0957-0233/25/8/084009. URL http://stacks.iop.org/0957-0233/25/i=8/a=084009
  27. 27.
    Soloff, S.M., Adrian, R.J., Liu, Z.C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8(12), 1441 (1997). DOI 10.1088/0957-0233/8/12/008. URL  https://doi.org/10.1088/0957-0233/8/12/008
  28. 28.
    Voges, M., Beversdorff, M., Willert, C., Krain, H.: Application of particle image velocimetry to a transonic centrifugal compressor. Exp. Fluids 43(2–3), 371–384 (2007). DOI 10.1007/s00348-007-0279-1. URL  https://doi.org/10.1007/s00348-007-0279-1
  29. 29.
    Wagner, J.L., Casper, K.M., Beresh, S.J., Arunajatesan, S., Henfling, J.F., Spillers, R.W., Pruett, B.O.: Relationship between acoustic tones and flow structure in transonic cavity flow. In: 45th AIAA Fluid Dynamics Conference (2015). DOI 10.2514/6.2015-2937. URL  https://doi.org/10.2514/6.2015-2937
  30. 30.
    Wernet, M.P.: Development of digital particle imaging velocimetry for use in turbomachinery. Exp. Fluids 28(2), 97–115 (2000). DOI 10.1007/s003480050015. URL  https://doi.org/10.1007/s003480050015
  31. 31.
    Wernet, M.P.: A flow field investigation in the diffuser of a high-speed centrifugal compressor using digital particle imaging velocimetry. Meas. Sci. Technol. 11(7), 1007 (2000). DOI 10.1088/0957-0233/11/7/316. URL  https://doi.org/10.1088/0957-0233/11/7/316
  32. 32.
    Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005). DOI 10.1007/s00348-005-0016-6. URL  https://doi.org/10.1007/s00348-005-0016-6
  33. 33.
    Woisetschläger, J., Lang, H., Hampel, B., Göttlich, E., Heitmeir, F.: Influence of blade passing on the stator wake in a transonic turbine stage investigated by particle image velocimetry and laser vibrometry. Proc. Inst. Mech. Eng. Part A: J. Power. Energy 217(4), 385–391 (2003). DOI 10.1243/095765003322315441. URL  https://doi.org/10.1243/095765003322315441
  34. 34.
    Woisetschläger, J., Mayrhofer, N., Hampel, B., Lang, H., Sanz, W.: Laser-optical investigation of turbine wake flow. Exp. Fluids 34(3), 371–378 (2003). DOI 10.1007/s00348-002-0568-7. URL  https://doi.org/10.1007/s00348-002-0568-7
  35. 35.
    Woisetschläger, J., Pecnik, R., Göttlich, E., Schennach, O., Marn, A., Sanz, W., Heitmeir, F.: Experimental and numerical flow visualization in a transonic turbine. J. Vis. 11(1), 95–102 (2008). DOI 10.1007/BF03181919. URL  https://doi.org/10.1007/BF03181919

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations