• Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


The chapter begins with a motivation of microfluidic flow analysis and summarizes the main diagnostic tools commonly used for flow measurements in microscopic systems. Thereafter, the typical implementation of 2D planar micro-PIV is presented, followed by a short historical background of significant development steps since 1993. Next, the imaging of volume-illuminated small particles is discussed and the essentials of three-dimensional diffraction pattern are outlined. The concept of depth-of-field and depth-of-correlation are introduced and the problem of particle visibility is discussed in detail. The second half of the chapter focuses on 3D micro-PIV and micro-PTV techniques. First, scanning, stereoscopic and tomographic micro-PIV recording techniques are presented. Thereafter, the confocal scanning microscopy and defocusing techniques are discussed. Finally, the 3D astigmatism PTV technique is outlined in detail and the strength of the technique for 3D time resolved flow analysis in micro-scale systems is demonstrated.


  1. 1.
    Adrian, R.J.: Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas. Sci. Tech. 8(12), 1393–1398 (1997). DOI 10.1088/0957-0233/8/12/003. URL  https://doi.org/10.1088/0957-0233/8/12/003
  2. 2.
    Adrian, R.J., Yao, C.S.: Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24(1), 44–52 (1985). DOI 10.1364/AO.24.000044. URL http://ao.osa.org/abstract.cfm?URI=ao-24-1-44
  3. 3.
    Angarita-Jaimes, N., McGhee, E., Chennaoui, M., Campbell, H.I., Zhang, S., Towers, C.E., Greenaway, A.H., Towers, D.P.: Wavefront sensing for single view three-component three-dimensional flow velocimetry. Exp. Fluids 41, 881–891 (2006). DOI 10.1007/s00348-009-0737-z. URL http://dx.doi.org/10.1007/s00348-009-0737-z
  4. 4.
    Angele, K.P., Suzuki, Y., Miwa, J., Kasagi, N.: Development of a high-speed scanning micro PIV system using a rotating disc. Meas. Sci. Tech. 17, 1639–1646 (2006). DOI 10.1088/0957-0233/17/7/001. URL http://stacks.iop.org/0957-0233/17/i=7/a=001
  5. 5.
    Baczyzmalski, D., Weier, T., Kähler, C.J., Cierpka, C.: Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes. Exp. Fluids 56(8), 162 (2015). DOI 10.1007/s00348-015-2029-0. URL http://dx.doi.org/10.1007/s00348-015-2029-0
  6. 6.
    Barnkob, R., Kähler, C.J., Rossi, M.: General defocusing particle tracking. Lab Chip 15, 3556–3560 (2015). DOI 10.1039/C5LC00562K. URL http://dx.doi.org/10.1039/C5LC00562K
  7. 7.
  8. 8.
    Bourdon, C.J., Olsen, M.G., Gorby, A.D.: Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry. Meas. Sci. Tech. 15(2), 318–327 (2004). DOI 10.1088/0957-0233/15/2/002. URL http://stacks.iop.org/0957-0233/15/i=2/a=002
  9. 9.
    Bown, M.R., MacInnes, J.M., Allen, R.W.K.: Micro-PIV measurments and simulation in complex microchannel geometries. Meas. Sci. Tech. 16(3), 619–626 (2005). DOI 10.1088/0957-233/16/3/002. URL http://stacks.iop.org/0957-0233/16/i=3/a=002
  10. 10.
    Brücker, C.: Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3-D starting flow around a short cylinder. Exp. Fluids 19, 255–263 (1995). DOI 10.1007/BF00196474. URL http://dx.doi.org/10.1007/BF00196474
  11. 11.
    Brücker, C.: 3d scanning PIV applied to an air flow in a motored engine using digital high-speed video. Meas. Sci. Tech. 8(12), 1480 (1997). DOI 10.1088/0957-0233/8/12/011. URL http://stacks.iop.org/0957-0233/8/i=12/a=011
  12. 12.
    Bruus, H., Dual, J., Hawkes, J., Hill, M., Laurell, T., Nilsson, J., Radel, S., Sadhal, S., Wiklund, M.: Forthcoming lab on a chip tutorial series on acoustofluidics: Acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011). DOI 10.1039/C1LC90058G. URL http://dx.doi.org/10.1039/C1LC90058G
  13. 13.
    Chen, S., Angarita-Jaimes, N., Angarita-Jaimes, D., Pelc, B., Greenaway, A.H., Towers, C.E., Lin, D., Towers, P.D.: Wavefront sensing for three-component three-dimensional flow velocimetry in microfluidics. Exp. Fluids 47, 849–863 (2009). DOI 10.1007/s00348-009-0737-z. URL http://dx.doi.org/10.1007/s00348-009-0737-z
  14. 14.
    Chen, Z., Milner, T.E., Dave, D., Nelson, J.S.: Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22(1), 64–66 (1997). DOI 10.1364/OL.22.000064. URL http://ol.osa.org/abstract.cfm?URI=ol-22-1-64
  15. 15.
    Chuang, H.S., Gui, L., Wereley, S.T.: Study of single pixel evaluation for experimental measurements in a microchannel. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. IMECE2006–14,517. Chicago, IL (2006)Google Scholar
  16. 16.
    Chuang, H.S., Gui, L., Wereley, S.T.: Nano-resolution flow measurement based on single pixel evaluation PIV. Microfluid. Nanofluid. 13(1) (2012). DOI 10.1007/s10404-012-0939-1Google Scholar
  17. 17.
    Chuang, H.S., Kumar, K., Wereley, S.T.: Optical flow characterization microparticle image velocimetry \(\mu \)PIV. In: J.D. Zahn (ed.) Methods in bioengineering: biomicrofabrication and biomicrofluidics, chap. 12. Artech House (2009)Google Scholar
  18. 18.
    Cierpka, C., Kähler, C.J.: Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J. Vis. 15(1), 1–31 (2012). DOI 10.1007/s12650-011-0107-9. URL http://dx.doi.org/10.1007/s12650-011-0107-9
  19. 19.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL http://dx.doi.org/10.1007/s00348-013-1533-3
  20. 20.
    Cierpka, C., Rossi, M., Segura, R., Kähler, C.J.: On the calibration of astigmatism particle tracking velocimetry for microflows. Meas. Sci. Tech. 22(1), 015,401 (2011). DOI 10.1088/0957-0233/22/1/015401. URL https://doi.org/10.1088/0957-0233/22/1/015401
  21. 21.
    Cierpka, C., Rossi, M., Segura, R., Mastrangelo, F., Kähler, C.J.: A comparative analysis of the uncertainty of astigmatism-\(\mu \)PTV, stereo-\(\mu \)PIV, and \(\mu \)PIV. Exp. Fluids 52(3), 605–615 (2012). DOI 10.1007/s00348-011-1075-5. URL https://doi.org/10.1007/s00348-011-1075-5
  22. 22.
    Cierpka, C., Segura, R., Hain, R., Kähler, C.J.: A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas. Sci. Tech. 21(4), 045,401 (2010). DOI 10.1088/0957-0233/21/4/045401. URL http://stacks.iop.org/0957-0233/21/i=4/a=045401
  23. 23.
    Dahm, W.J.A., Su, L.K., Southerland, K.B.: A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys. Fluids A 4(10), 2191–2206 (1992). DOI 10.1063/1.858461. URL http://scitation.aip.org/content/aip/journal/pofa/4/10/10.1063/1.858461
  24. 24.
    Dalgarno, P.A., Dalgarno, H.I., Putoud, A., Lambert, R., Paterson, L., Logan, D.C., Towers, D.P., Warburton, R.J., Greenaway, A.H.: Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy. Opt. Express 18, 877–884 (2010). DOI 10.1364/OE.18.000877. URL http://dx.doi.org/10.1364/OE.18.000877
  25. 25.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006). DOI 10.1007/s00348-006-0212-z. URL http://dx.doi.org/10.1007/s00348-006-0212-z
  26. 26.
    Elsinga, G.E., Westerweel, J., Scarano, F., Novara, M.: On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp. Fluids 50(4), 825–838 (2011). DOI 10.1007/s00348-010-0930-0. URL http://dx.doi.org/10.1007/s00348-010-0930-0
  27. 27.
    Gösch, M., Blom, H., Holm, J., Heino, T., Rigler, R.: Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal. Chem. 72(14), 3260–3265 (2000). DOI 10.1021/ac991448p. URL http://dx.doi.org/10.1021/ac991448p
  28. 28.
    Gothsch, T., Schilcher, C., Richter, C., Beinert, S., Dietzel, A., Büttgenbach, S., Kwade, A.: High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid. Nanofluid. 18(1), 121–130 (2015). DOI 10.1007/s10404-014-1419-6. URL http://dx.doi.org/10.1007/s10404-014-1419-6
  29. 29.
    Grothe, R.L., Dabiri, D.: An improved three-dimensional characterization of defocusing digital particle image velocimetry (DDPIV) based on a new imaging volume definition. Meas. Sci. Tech. 19(6), 065,402 (2008). DOI 10.1088/0957-0233/19/6/065402. URL http://stacks.iop.org/0957-0233/19/i=6/a=065402
  30. 30.
    Guerrero, J.A., Mendoza-Santoyo, F., Moreno, D., Funes-Gallanzi, M., Fernandez-Orozco, S.: Particle positioning from CCD images: experiments and comparison with the generalized Lorenz-Mie theory. Meas. Sci. Tech. 11(5), 568–575 (2000). DOI 10.1088/0957-0233/11/5/318. URL http://stacks.iop.org/0957-0233/11/i=5/a=318
  31. 31.
    Guerrero-Viramontes, J.A., Moreno-Hernández, D., Mendoza-Santoyo, F., Funes-Gallanzi, M.: 3D particle positioning from CCD images using the generalized Lorenz-Mie and Huygens-Fresnel theory. Meas. Sci. Tech. 17(8), 2328–2334 (2006). DOI 10.1088/0957-0233/17/8/039. URL http://stacks.iop.org/0957-0233/17/i=8/a=039
  32. 32.
    Hagsäter, S.M., Westergaard, C.H., Bruus, H., Kutter, J.P.: Investigations on LED illumination for micro-PIV including a novel front-lit configuration. Exp. Fluids 44(2), 211–219 (2008). DOI 10.1007/s00348-007-0394-z. URL http://dx.doi.org/10.1007/s00348-007-0394-z
  33. 33.
    Hain, R., Kähler, C.J.: Single camera volumetric velocity measurements using optical aberrations. In: 12th International Symposium on Flow Visualization. Göttingen, Germany (2006)Google Scholar
  34. 34.
    Hain, R., Kähler, C.J.: Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42(4), 575–587 (2007). DOI 10.1007/s00348-007-0266-6. URL http://dx.doi.org/10.1007/s00348-007-0266-6
  35. 35.
    Hain, R., Kähler, C.J., Radespiel, R.: Principles of a volumetric velocity measurement technique based on optical aberrations In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 106, pp. 1–10. Springer, Berlin (2009). DOI 10.1007/978-3-642-01106-1_1. URL http://dx.doi.org/10.1007/978-3-642-01106-1_1
  36. 36.
    van Hinsberg, N.P., Roisman, I.V., Tropea, C.: Three-dimensional, three-component particle imaging using two optical aberrations and a single camera. In: 14th Internatioanl Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (2008). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2008/papers/03.1_2.pdf
  37. 37.
    Hiraoka, Y., Sedat, J.W., Agard, D.A.: Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57, 325–333 (1990). DOI 10.1016/S0006-3495(90)82534-0. URL http://www.sciencedirect.com/science/article/pii/S0006349590825340
  38. 38.
    Holtzer, L., Meckel, T., Schmidt, T.: Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90(5), 053,902 (2007). DOI 10.1063/1.2437066. URL http://dx.doi.org/10.1063/1.2437066
  39. 39.
    Hsu, W.Y., Lee, C.S., Chen, P.J., Chen, N.T., Chen, F.Z., Yu, Z.R., Kuo, C.H., Hwang, C.H.: Development of the fast astigmatism auto-focus microscope system. Meas. Sci. Tech. 20(4), 045,902 (2009). DOI 10.1088/0957-0233/20/4/045902. URL http://stacks.iop.org/0957-0233/20/i=4/a=045902
  40. 40.
    Huang, B., Wang, W., Bates, M., Zhuang, X.: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). DOI 10.1126/science.1153529. URL http://science.sciencemag.org/content/319/5864/810
  41. 41.
    Inoué, S., Spring, K.R.: Video Microscopy: The Fundamentals, 2nd edn. Language of Science. Springer, New York (1997)Google Scholar
  42. 42.
    Ismagilov, R.F., Stroock, A.D., Kenis, P.J.A., Whitesides, G., Stone, H.A.: Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76(17), 2376–2378 (2000). DOI 10.1063/1.126351. URL http://dx.doi.org/10.1063/1.126351
  43. 43.
    Kähler, C.J.: Visualization of 3D velocity and temperature fields with micron resolution. In: 16th International Symposium on Flow Visualization, Okinawa (Japan) (2014). URL https://athene-forschung.unibw.de/?id=108998
  44. 44.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL http://dx.doi.org/10.1007/s00348-012-1280-x
  45. 45.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL http://dx.doi.org/10.1007/s00348-012-1307-3
  46. 46.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL http://dx.doi.org/10.1007/s00348-006-0167-0
  47. 47.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Tech. 16(3), 790–804 (2005). DOI 10.1088/0957-0233/16/3/022. URL http://stacks.iop.org/0957-0233/16/i=3/a=022
  48. 48.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Tech. 19(4), 049,801 (2008). DOI 10.1088/0957-0233/19/4/049801. URL http://stacks.iop.org/0957-0233/19/i=4/a=049801
  49. 49.
    Kao, H.P., Verkman, A.S.: Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle postition. Biophys. J. 67, 1291–1300 (1994). DOI 10.1016/S0006-3495(94)80601-0. URL http://dx.doi.org/10.1016/S0006-3495(94)80601-0
  50. 50.
    Kelemen, K., Crowther, F.E., Cierpka, C., Hecht, L.L., Kähler, C.J., Schuchmann, H.P.: Investigations on the characterization of laminar and transitional flow conditions after high pressure homogenization orifices. Microfluid. Nanofluid. 18(4), 599–612 (2015). DOI 10.1007/s10404-014-1457-0. URL http://dx.doi.org/10.1007/s10404-014-1457-0
  51. 51.
    Kiebert, F., Wege, S., Massing, J., Konig, J., Cierpka, C., Weser, R., Schmidt, H.: 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Lab Chip (2017). DOI 10.1039/C7LC00184C. URL http://dx.doi.org/10.1039/C7LC00184C
  52. 52.
    Kim, H., Große, S., Elsinga, G., Westerweel, J.: Full 3D–3C velocity measurement inside a liquid immersion droplet. Exp. Fluids 51(2), 395–405 (2011). DOI 10.1007/s00348-011-1053-y. URL http://dx.doi.org/10.1007/s00348-011-1053-y
  53. 53.
    Kinoshita, H., Kaneda, S., Fujii, T., Oshima, M.: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7, 338–346 (2007). DOI 10.1039/B617391H. URL http://dx.doi.org/10.1039/B617391H
  54. 54.
    Klein, S.A., Posner, J.D.: Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry. Meas. Sci. Tech. 21(10), 105,409 (2010). DOI 10.1088/0957-0233/21/10/105409. URL http://stacks.iop.org/0957-0233/21/i=10/a=105409
  55. 55.
    Kloosterman, A., Poelma, C., Westerweel, J.: Flow rate estimation in large depth-of-field micro-PIV. Exp. Fluids 50(6), 1587–1599 (2010). DOI 10.1007/s00348-010-1015-9. URL http://dx.doi.org/10.1007/s00348-010-1015-9
  56. 56.
    Koochesfahani, M.M., Cohn, R.K., Gendrich, C.P., Nocera, D.G.: Molecular tagging diagnostics for the study of kinematics and mixing in liquid-phase flows. In: Adrian, R.J., Durao, D., Durst, F., Heitor, M., Maeda, M., Whitelaw, J.H.(eds.) Developments in Laser Techniques in Fluid Mechanics, pp. 125–134. Springer Verlag, New York (1997). URL http://www.egr.msu.edu/tmual/Papers_PDF/1996_MTV_Review-Springer-Chapter.pdf
  57. 57.
    Koutsiaris, A.G., Mathioulakis, D.S., Tsangaris, S.: Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries. Meas. Sci. Tech. 10(11), 1037 (1999). DOI 10.1088/0957-0233/10/11/311. URL http://stacks.iop.org/0957-0233/10/i=11/a=311
  58. 58.
    Kumar, A., Cierpka, C., Williams, S.J., Kähler, C.J., Wereley, S.T.: 3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera. Micro Nano 10, 355–365 (2011). DOI 10.1007/s10404-010-0674-4. URL http://dx.doi.org/10.1007/s10404-010-0674-4
  59. 59.
    Lanzillotto, A.M., et al.: Applications of X-ray micro-imaging, visualization and motion analysis techniques to fluidic microsystems. In: Technical Digest of the IEEE 8th International Conference on Solid State Sensor and Actuator Workshop, 3–6 June, Hilton Head Island, SC, pp. 123–126 (1995)Google Scholar
  60. 60.
    Laurell, T., Petersson, F., Nilsson, A.: Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007). DOI 10.1039/B601326K. URL http://dx.doi.org/10.1039/B601326K
  61. 61.
    Lawson, N.J., Wu, J.: Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas. Sci. Tech. 8(12), 1455 (1997). DOI 10.1088/0957-0233/8/12/009. URL http://stacks.iop.org/0957-0233/8/i=12/a=009
  62. 62.
    Lee, S.J., Kim, S.: Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry. Exp. Fluids 46, 255–264 (2009). DOI 10.1007/s00348-008-0555-8. URL http://dx.doi.org/10.1007/s00348-008-0555-8
  63. 63.
    Leu, T.S., Lanzillotto, A.M., Amabile, M., Wildes, R.: Analysis of fluidic and mechanical motion in MEMS by using high speed X-ray micro-imaging techniques. In: Solid State Sensors and Actuators. TRANSDUCERS ’97 Chicago., 1997 International Conference on, vol. 1, pp. 149–150 (1997). DOI 10.1109/SENSOR.1997.613604. URL http://dx.doi.org/10.1109/SENSOR.1997.613604
  64. 64.
    Li, D.: Encyclopedia of Microfluidics and Nanofluidics, 2nd edn. Encyclopedia of Microfluid. Nanofluidics. Springer, New York (2015). URL https://books.google.com/books?id=vFI5fcNFbgYC
  65. 65.
    Lima, R., Wada, S., Takeda, M., Tsubota, K., Yamaguchi, T.: In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles. J Biomech. 40, 2752–2757 (2007). DOI 10.1016/j.biomech.2007.01.012. URL https://doi.org/10.1016/j.jbiomech.2007.01.012
  66. 66.
    Lima, R., Wada, S., Tsubota, K., Yamaguchi, T.: Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Tech. 17(4), 797–808 (2006). DOI 10.1088/0957-0233/17/4/026. URL http://stacks.iop.org/0957-0233/17/i=4/a=026
  67. 67.
    Lin, D., Angarita-Jaimes, N.C., Chen, S., Greenaway, A.H., Towers, C.E., Towers, D.P.: Three-dimensional particle imaging by defocusing method with an annular aperture. Opt. Lett. 33(9), 905–907 (2008). DOI 10.1364/OL.33.000905. URL https://doi.org/10.1364/OL.33.000905
  68. 68.
    Lindken, R., Westerweel, J., Wieneke, B.: Stereoscopic micro particle image velocimetry. Exp. Fluids 41(2), 161–171 (2006). DOI 10.1007/s00348-006-0154-5. URL http://dx.doi.org/10.1007/s00348-006-0154-5
  69. 69.
    Lu, J., Pereira, F., Fraser, S.E., Gharib, M.: Three-dimensional real-time imaging of cardiac cell motions in living embryos. J. Biomed. Opt. 13, 014006 (2008). DOI 10.1117/1.2830824. URL http://dx.doi.org/10.1117/1.2830824
  70. 70.
    Marin, A., Liepelt, R., Rossi, M., Kähler, C.J.: Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12, 1593–1600 (2016). DOI 10.1039/C5SM02354H. URL http://dx.doi.org/10.1039/C5SM02354H
  71. 71.
    Marin, A., Rossi, M., Rallabandi, B., Wang, C., Hilgenfeldt, S., Kähler, C.J.: Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3, 041,001 (2015). DOI 10.1103/PhysRevApplied.3.041001. URL https://link.aps.org/doi/10.1103/PhysRevApplied.3.041001
  72. 72.
    Massing, J., Kaden, D., Kähler, C.J., Cierpka, C.: Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics. Meas. Sci. Tech. 27(11), 12 (2016). DOI 10.1088/0957-0233/27/11/115301. URL http://stacks.iop.org/0957-0233/27/i=11/a=115301
  73. 73.
    Meinhart, C.D., Wereley, S.T.: The theory of diffraction-limited resolution in microparticle image velocimetry. Meas. Sci. Tech. 14(7), 1047 (2003). DOI 10.1088/0957-0233/14/7/320. URL http://stacks.iop.org/0957-0233/14/i=7/a=320
  74. 74.
    Meinhart, C.D., Wereley, S.T., Gray, M.H.B.: Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Tech. 11(6), 809 (2000). DOI 10.1088/0957-0233/11/6/326. URL http://stacks.iop.org/0957-0233/11/i=6/a=326
  75. 75.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids 27(5), 414–419 (1999). DOI 10.1007/s003480050366. URL http://dx.doi.org/10.1007/s003480050366
  76. 76.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: Micron-resolution velocimetry techniques. In: Adrian, R., Durão, D., Durst, F., Heitor, M., Maeda, M., Whitelaw, J.(eds.) Laser Techniques Applied to Fluid Mechanics, pp. 57–70. Springer, Berlin (2000). DOI 10.1007/978-3-642-56963-0_4. URL http://dx.doi.org/10.1007/978-3-642-56963-0_4
  77. 77.
    Meinhart, C.D., Zhang, H.: The flow structure inside a microfabricated inkjet printer head. J. Microelectromech. Syst. 9(1), 67–75 (2000). DOI 10.1109/84.825779. URL http://dx.doi.org/10.1109/84.825779
  78. 78.
    Min, Y.U., Kim, K.C.: Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics. Meas. Sci. Tech. 22, 064,001 (2011). DOI 10.1088/0957-0233/22/6/064001. URL http://stacks.iop.org/0957-0233/22/i=6/a=064001
  79. 79.
    Minsky, M.: Microscopy apparatus (1961). US Patent 3,013,467Google Scholar
  80. 80.
    Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988). DOI 10.1002/sca.4950100403. URL http://dx.doi.org/10.1002/sca.4950100403
  81. 81.
    Mlodzianoski, M.J., Juette, M.F., Beane, G.L., Bewersdorf, J.: Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt. Express 17, 8264–8277 (2009). DOI 10.1364/OE.17.008264. URL https://doi.org/10.1364/OE.17.008264
  82. 82.
    Moreno-Hernandez, D., Bueno-ía, J.A., Guerrero-Viramontes, J.A., Mendoza-Santoyo, F.: 3D particle positioning by using the Fraunhofer criterion. Opt. Lasers Eng. 49(6), 729–735 (2011). DOI 10.1016/j.optlaseng.2011.01.019. URL http://www.sciencedirect.com/science/article/pii/S0143816611000315
  83. 83.
    Muller, P.B., Rossi, M., Marín, A.G., Barnkob, R., Augustsson, P., Laurell, T., Kähler, C.J., Bruus, H.: Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys. Rev. E 88, 023,006 (2013). DOI 10.1103/PhysRevE.88.023006. URL https://link.aps.org/doi/10.1103/PhysRevE.88.023006
  84. 84.
    Murata, S., Kawamura, M.: Particle depth measurement based on depth-from-defocus. Opt. Laser Tech. 31, 95–102 (1999). DOI 10.1016/S0030-3992(99)00027-4. URL https://doi.org/10.1016/S0030-3992(99)00027-4
  85. 85.
    Nasarek, R.: Temperature field measurements with high spatial and temporal resolution using liquid crystal thermography and laser induced fluorescence. Ph.D. thesis, Technische Universität Darmstadt, Germany (2010)Google Scholar
  86. 86.
    Nguyen, N.T., Wereley, S.T.: Fundamentals and Applications of Microfluidics. Artech House integrated microsystems series. Artech House (2006). URL https://books.google.com/books?id=ZbTCQgAACAAJ
  87. 87.
    Olsen, M.G., Adrian, R.J.: Brownian motion and correlation in particle image velocimetry. Opt. Laser Tech. 32(7–8), 621–627 (2000). DOI 10.1016/S0030-3992(00)00119-5. URL http://www.sciencedirect.com/science/article/pii/S0030399200001195. Optical methods in heat and fluid flow
  88. 88.
    Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 29(1), S166–S174 (2000). DOI 10.1007/s003480070018. URL http://dx.doi.org/10.1007/s003480070018
  89. 89.
    Ovryn, B., Hovenac, E.A.: Coherent forward scattering particle-image velocimetry: application of Poisson’s spot for velocity measurements in fluids. In: Optical Diagnostics in Fluid and Thermal Flow, pp. 338–348. San Diego, CA, USA (1993). DOI 10.1117/12.163718. URL http://dx.doi.org/10.1117/12.163718
  90. 90.
    Padilla Sosa, P., Moreno, D., Guerrero, J.A., Funes-Gallanzi, M.: Low-magnification particle positioning for 3D velocimetry applications. Opt. Laser Tech. 34(1), 59–68 (2002). DOI 10.1016/S0030-3992(01)00096-2. URL http://www.sciencedirect.com/science/article/pii/S0030399201000962
  91. 91.
    Park, J.S., Choi, C.K., Kihm, K.: Optically sliced micro-PIV using confocal laser scanning microscopy CLSM. Exp. Fluids 37, 105–119 (2004). DOI 10.1007/s00348-004-0790-6. URL http://dx.doi.org/10.1007/s00348-004-0790-6
  92. 92.
    Pereira, F., Gharib, M.: Defocusing digital particle image velocimetry and three-dimensional characterization of two phase flows. Meas. Sci. Tech. 13(5), 683–694 (2002). DOI 10.1088/0957-0233/13/5/305. URL http://stacks.iop.org/0957-0233/13/i=5/a=305
  93. 93.
    Pereira, F., Gharib, M., Dabiri, D., Modarress, D.: Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 29(1), S78–S84 (2000). DOI 10.1007/s003480070010. URL http://dx.doi.org/10.1007/s003480070010
  94. 94.
    Pereira, F., Lu, J., Castaño Graff, E., Gharib, M.: Microscale 3D flow mapping with \(\mu \)DDPIV. Exp. Fluids 42, 589–599 (2007). DOI 10.1007/s00348-007-0267-5. URL http://dx.doi.org/10.1007/s00348-007-0267-5
  95. 95.
    Puccetti, G., Rossi, M., Morini, G.L., Kähler, C.J.: Sensitivity to shear stress of non-encapsulated thermochromic liquid crystal (TLC) particles for microfluidic applications. Microfluid. Nanofluid. 20(1), 19 (2016). DOI 10.1007/s10404-015-1694-x. URL http://dx.doi.org/10.1007/s10404-015-1694-x
  96. 96.
    Raffel, M., Westerweel, J., Willert, C.E., Gharib, M., Kompenhans, J.: Analytical and experimental investigations of dual-plane particle image velocimetry. Opt. Eng. 35(7), 2067–2074 (1996). DOI 10.1117/1.600695. URL http://dx.doi.org/10.1117/1.600695
  97. 97.
    Ragan, T., Huang, H., So, P., Gratton, E.: 3D particle tracking on a two-photon microscope. J. Fluoresc. 16(3), 325–336 (2006). DOI 10.1007/s10895-005-0040-1. URL http://dx.doi.org/10.1007/s10895-005-0040-1
  98. 98.
    Rallabandi, B., Marin, A., Rossi, M., Kähler, C.J., Hilgenfeldt, S.: Three-dimensional streaming flow in confined geometries. J. Fluid Mech. 777, 408–429 (2015). DOI 10.1017/jfm.2015.336. URL https://doi.org/10.1017/jfm.2015.336
  99. 99.
    Rohály, J., Lammerding, J., Frigerio, F., Hart, D.P.: Monocular 3-D active \(\mu \)-PTV. In: 4th International Symposium on PIV. Göttingen, Germany (2001)Google Scholar
  100. 100.
    Rossi, M., Kähler, C.J.: Optimization of astigmatic particle tracking velocimeters. Exp. Fluids 55(9), 1809 (2014). DOI 10.1007/s00348-014-1809-2. URL http://dx.doi.org/10.1007/s00348-014-1809-2
  101. 101.
    Rossi, M., Lindken, R., Hierck, B.P., Westerweel, J.: Tapered microfluidic chip for the study of biochemical and mechanical response of endothelial cells to shear flow at subcellular level. Lab Chip 9, 1403–1411 (2009). DOI 10.1039/B822270N. URL http://dx.doi.org/10.1039/B822270N
  102. 102.
    Rossi, M., Lindken, R., Westerweel, J.: Optimization of multiplane \(\mu \)PIV for wall shear stress and wall topography characterization. Exp. Fluids 48, 211–223 (2010). DOI 10.1007/s00348-009-0725-3. URL http://dx.doi.org/10.1007/s00348-009-0725-3
  103. 103.
    Rossi, M., Segura, R., Cierpka, C., Kähler, C.J.: On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp. Fluids 52(4), 1063–1075 (2012). DOI 10.1007/s00348-011-1194-z. URL http://dx.doi.org/10.1007/s00348-011-1194-z
  104. 104.
    Sadr, R., Anoop, K., Khader, R.: Effects of surface forces and non-uniform out-of-plane illumination on the accuracy of nPIV velocimetry. Meas. Sci. Tech. 23(5), 055,303 (2012). DOI 10.1088/0957-0233/23/5/055303. URL http://stacks.iop.org/0957-0233/23/i=5/a=055303?key=crossref.0d604a3da34abe9a910046b1125f2779
  105. 105.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998). DOI 10.1007/s003480050235. URL http://dx.doi.org/10.1007/s003480050235
  106. 106.
    Segura, R., Cierpka, C., Rossi, M., Joseph, S., Bunjes, H., Kähler, C.J.: Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics. Microfluid. Nanofluid. 14(3), 445–456 (2013). DOI 10.1007/s10404-012-1063-y. URL http://dx.doi.org/10.1007/s10404-012-1063-y
  107. 107.
    Segura, R., Cierpka, C., Rossi, M., Kähler, C.J.: Thermochromic liquid crystals for particle image thermometry. In: Li, D (ed.) Encycl. Microfluid. Nanofluid. pp. 1–10. Springer US, Boston, MA (2013). DOI 10.1007/978-3-642-27758-0_1183-6. URL http://dx.doi.org/10.1007/978-3-642-27758-0_1183-6
  108. 108.
    Segura, R., Rossi, M., Cierpka, C., Kähler, C.J.: Simultaneous three-dimensional temperature and velocity field measurements using astigmatic imaging of non-encapsulated thermo-liquid crystal (TLC) particles. Lab Chip 15, 660–663 (2015). DOI 10.1039/C4LC01268B. URL http://dx.doi.org/10.1039/C4LC01268B
  109. 109.
    Shinohara, K., Sugii, Y., Jeong, J.H., Okamoto, K.: Development of a three-dimensional scanning microparticle image velocimetry system using a piezo actuator. Rev. Sci. Instrum. 76, 106109 (2005). DOI 10.1063/1.2114889. URL http://dx.doi.org/10.1063/1.2114889
  110. 110.
    Snoeyink, C., Wereley, S.: Single-image far-field subdiffraction limit imaging with axicon. Opt. Lett. 38(5), 625–627 (2013). DOI 10.1364/OL.38.000625. URL http://ol.osa.org/abstract.cfm?URI=ol-38-5-625
  111. 111.
    Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005). DOI 10.1103/RevModPhys. 77.977. URL https://link.aps.org/doi/10.1103/RevModPhys.77.977
  112. 112.
    Stolz, W., Köhler, J.: In-plane determination of 3D-velocity vectors using particle tracking anemometry (PTA). Exp. Fluids 17(1), 105–109 (1994). DOI 10.1007/BF02412811. URL http://dx.doi.org/10.1007/BF02412811
  113. 113.
    Tien, W.H.: Development of multi-spectral three-dimensional micro particle tracking velocimetry. Meas. Sci. Tech. 27(8), 084,010 (2016). DOI 10.1088/0957-0233/27/8/084010. URL https://doi.org/10.1088/0957-0233/27/8/084010
  114. 114.
    Tien, W.H., Hove, Dabiri Danacand, J.R., : Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows. Exp. Fluids 55(3), 1684 (2014). DOI 10.1007/s00348-014-1684-x. URL http://dx.doi.org/10.1007/s00348-014-1684-x
  115. 115.
    Tien, W.H., Kartes, P., Yamasaki, T., Dabiri, D.: A color-coded backligthed defocusing digital particle image velocimetry system. Exp. Fluids 44(6), 1015–1026 (2008). DOI 10.1007/s00348-007-0457-1. URL http://dx.doi.org/10.1007/s00348-007-0457-1
  116. 116.
    Towers, C.E., Towers, D.P., Campbell, H.I., Zhang, S., Greenaway, A.H.: Three-dimensional particle imaging by wavefront sensing. Opt. Lett. 31(9), 1220–1222 (2006). DOI 10.1364/OL.31.001220. URL http://ol.osa.org/abstract.cfm?URI=ol-31-9-1220
  117. 117.
    Volk, A., Rossi, M., Kähler, C.J., Hilgenfeldt, S., Marin, A.: Growth control of sessile microbubbles in PDMS devices. Lab Chip 15, 4607–4613 (2015). DOI 10.1039/C5LC00982K. URL http://dx.doi.org/10.1039/C5LC00982K
  118. 118.
    Wereley, S.T., Meinhart, C.D.: Micron-resolution particle image velocimetry. In: Breuer, K.S. (ed.) Microscale Diagnostic Techniques, pp. 51–112. Springer, Berlin (2005). DOI 10.1007/3-540-26449-3_2. URL http://dx.doi.org/10.1007/3-540-26449-3_2
  119. 119.
    Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Ann. Revi. Fluid Mech. 42 (2010). doi:10.1146/annurev-fluid-121108-145427. URL http://dx.doi.org/10.1146/annurev-fluid-121108-145427
  120. 120.
    Westerweel, J., Geelhoed, P., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004). DOI 10.1007/s00348-004-0826-y. URL http://dx.doi.org/10.1007/s00348-004-0826-y
  121. 121.
    Willert, C.E., Gharib, M.: Three-dimensional particle imaging with a single camera. Exp. Fluids 12(6), 353–358 (1992). DOI 10.1007/BF00193880. URL http://dx.doi.org/10.1007/BF00193880
  122. 122.
    Williams, S.J., Park, C., Wereley, S.T.: Advances and applications on microfluidic velocimetry techniques. Micro Nano 8, 709–726 (2010). DOI 10.1007/s10404-010-0588-1. URL http://dx.doi.org/10.1007/s10404-010-0588-1
  123. 123.
    Yoon, S.Y., Khim, K.D., Kim, K.C.: Correlation of fluid refractive index with calibration coefficient for micro-defocusing digital particle image velocimetry. Meas. Sci. Tech. 22(3), 037,001 (2011). DOI 10.1088/0957-0233/22/3/037001. URL http://stacks.iop.org/0957-0233/22/i=3/a=037001
  124. 124.
    Yoon, S.Y., Kim, K.C.: 3D particle and 3D velocity field measurement in a microvolume via the defocusing concept. Meas. Sci. Tech. 17(11), 2897–2905 (2006). DOI 10.1088/0957-0233/17/11/006. URL http://stacks.iop.org/0957-0233/17/i=11/a=006
  125. 125.
    Yoshida, H.: The wide variety of possible applications of micro-thermofluid control. Microfluid. Nanofluid. 1, 289–300 (2005). DOI 10.1007/s10404-004-0014-7. URL http://dx.doi.org/10.1007/s10404-004-0014-7
  126. 126.
    Yu, C.H., Yoon, J.H., Kim, H.B.: Development and validation of stereoscopic micro-PTV using match probability. J. Mech. Sci. Tech. 23(3), 845–855 (2009). DOI 10.1007/s12206-008-1209-8. URL http://dx.doi.org/10.1007/s12206-008-1209-8
  127. 127.
    Zettner, C.M., Yoda, M.: Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluids 34(1), 115–121 (2003). DOI 10.1007/s00348-002-0541-5. URL http://dx.doi.org/10.1007/s00348-002-0541-5

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations