Skip to main content

Electrochemical Methods of Micropart’s Manufacturing

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter introduces basics of electrochemical micromachining (ECMM). In this process, no mechanical contact between tool and workpiece occurs, and machinability is not connected with material mechanical properties, and therefore, it is an attractive technology, especially when shaping 3-D sculptured surfaces in difficult-to-cut materials. However, the key problem in ECMM is to localize dissolution to achieve satisfactory accuracy. In this chapter, specificity of electrochemical micromachining and recent trends in this area are presented. The conditions of electrochemical dissolution are discussed, and the possibilities of shaping accuracy increase are indicated in details. The special attention is paid to the results of application of voltage pulses and integration with other technologies in hybrid and sequential machining.

This is a preview of subscription content, log in via an institution.

References

  1. Davydov AD, Volgin VM, Lyubimov VV (2004) Electrochemical machining of metals: Fundamentals of electrochemical shaping. Russ J Electrochem 40(12):1230–1265

    Article  Google Scholar 

  2. Wang W, Zhu D, Qu N, Huang S, Fang X (2009) Electrochemical drilling inclined holes using wedged electrodes. Int J Adv Manuf Technol 47(9–12):1129–1136. https://doi.org/10.1007/s00170-009-2247-9

  3. Kim, BH, Ryu SH, Choi DK, Chu CN (2005) Micro electrochemical milling. J Micromech Microeng 15(1):124–129. https://doi.org/10.1088/0960-1317/15/1/019

  4. Wang S, Zhu D, Zeng Y, Liu Y (2010) Micro wire electrode electrochemical cutting with low frequency and small amplitude tool vibration. Int J Adv Manuf Technol 53(5–8):535–544. https://doi.org/10.1007/s00170-010-2835-8

  5. Chen X, Qu N, Li H, Xu Z (2016) Electrochemical micromachining of micro-dimple arrays using a polydimethylsiloxane (PDMS) mask. J Mater Process Technol 229:102–110. https://doi.org/10.1016/j.jmatprotec.2015.09.008

  6. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26. https://doi.org/10.1016/j.procir.2013.03.002

  7. Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci Tech Sci 52(4):313–320

    Google Scholar 

  8. Schuster R (2000) Electrochemical Micromachining. Sci 289(5476):98–101. https://doi.org/10.1126/science.289.5476.98

  9. Kirchner V, Xia X, Schuster R (2001) Electrochemical nanostructuring with ultrashort voltage pulses. Acc Chem Res 34(5):371–377. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21727446

  10. Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses–a versatile method with lithographical precision. Electrochim Acta 48(20–22):3213–3219. https://doi.org/10.1016/S0013-4686(03)00374-8

  11. Cagnon L, Kirchner V, Kock M, Schuster R, Ertl G, Gmelin WT, Kück H (2003) Electrochemical Micromachining of Stainless Steel by Ultrashort Voltage Pulses. Z Phys Chem 217(4–2003):299–314. https://doi.org/10.1524/zpch.217.4.299.20383

  12. Fan Z, Hourng L (2011) Electrochemical micro-drilling of deep holes by rotational cathode tools. Int J 555–563. https://doi.org/10.1007/s00170-010-2744-x

  13. Jo CH, Kim BH, Chu CN (2009) Micro electrochemical machining for complex internal micro features. CIRP Ann—Manuf Technol 58(1):181–184. https://doi.org/10.1016/j.cirp.2009.03.072

  14. Maurer JJ, Mallett JJ, Hudson JL, Fick SE, Moffat TP, Shaw GA (2010) Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses. Electrochim Acta 55(3):952–958. https://doi.org/10.1016/j.electacta.2009.09.004

  15. Liu Y, Zhu D, Zhu L (2012). Micro electrochemical milling of complex structures by using in situ fabricated cylindrical electrode. Int J, 977–984. https://doi.org/10.1007/s00170-011-3682-y

  16. Yong L, Di Z, Yongbin Z, Shaofu H, Hongbing Y (2010) Experimental investigation on complex structures machining by electrochemical micromachining technology. Chin J Aeronaut 23(5):578–584. https://doi.org/10.1016/S1000-9361(09)60257-0

  17. Zeng YB, Yu Q, Wang SH, Zhu D (2012) Enhancement of mass transport in micro wire electrochemical machining. CIRP Ann—Manuf Technol 61(1):195–198. https://doi.org/10.1016/j.cirp.2012.03.082

  18. Skoczypiec S (2016) Discussion of ultrashort voltage pulses electrochemical micromachining : A review. Int J Adv Manuf Technol 87:177–187. https://doi.org/10.1007/s00170-016-8392-z

  19. Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing. CIRP Ann—Manuf Technol. https://doi.org/10.1016/j.cirp.2014.05.003

  20. Gupta et al (2016) Chapter-1 Overview of hybrid machining processes. In (eds.) Hybrid machining processes, Springer, pp 1–7

    Google Scholar 

  21. Zhu D, Zeng YB, Xu ZY, Zhang XY (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann—Manuf Technol 60(1):247–250. https://doi.org/10.1016/j.cirp.2011.03.130

  22. Skoczypiec S, Grabowski M, Ruszaj A (2016) The impact of electrochemical assistance on the microturning process. Int J Adv Manuf Technol 86:1873–1880. https://doi.org/10.1007/s00170-015-8320-7

  23. Ghoshal B, Bhattacharyya B (2015) Vibration assisted electrochemical micromachining of high aspect ratio micro features. Precis Eng 42:231–241. https://doi.org/10.1016/j.precisioneng.2015.05.005

  24. Ghoshal B, Bhattacharyya B (2015) Investigation on profile of microchannel generated by electrochemical micromachining. J Mater Process Technol 222:410–421. https://doi.org/10.1016/j.jmatprotec.2015.03.025

  25. Ghoshal B, Bhattacharyya B (2014) Shape control in micro borehole generation by EMM with the assistance of vibration of tool. Precis Eng 38(1):127–137. https://doi.org/10.1016/j.precisioneng.2013.08.004

  26. Skoczypiec S (2010) Research on ultrasonically assisted electrochemical machining process. Int J Adv Manuf Technol (2011) 52:565–574. https://doi.org/10.1007/s00170-010-2774-4

  27. Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10(2):5–10. https://doi.org/10.1007/s12541-009-0020-5

  28. Krötz H, Wegener K (2015) Sparc assisted electrochemical machining: a novel possibility for microdrilling into electrical conductive materials using the electrochemical discharge phenomenon. Int J Adv Manuf Technol 79(9–12):1633–1643. https://doi.org/10.1007/s00170-015-6913-9

  29. Singh T, Dvivedi A (2016) Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods. Int J Mach Tools Manuf 105:1–13. https://doi.org/10.1016/j.ijmachtools.2016.03.004

  30. Yin Q, Wang B, Zhang Y, Ji F, Liu G (2014) Research of lower tool electrode wear in simultaneous EDM and ECM. J Mater Process Technol 214(8):1759–1768. https://doi.org/10.1016/j.jmatprotec.2014.03.025

  31. Kunieda M, Mizugai K, Watanabe S, Shibuya N, Iwamoto N (2011) Electrochemical micromachining using flat electrolyte jet. CIRP Ann—Manuf Technol 60(1):251–254. https://doi.org/10.1016/j.cirp.2011.03.022

  32. Lipiec P, Wyszynski D, Skoczypiec S (2013) Primary research on jet ECM processing of difficult to cut materials. Key Eng Mater 554–557:1793–1799. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1793

  33. Hackert-Oschätzchen M, Meichsner G, Zinecker M, Martin A, Schubert A (2012) Micro machining with continuous electrolytic free jet. Precis Eng 36(4):612–619. https://doi.org/10.1016/j.precisioneng.2012.05.003

  34. De Silva AKM, Pajak PT, McGeough JA, Harrison DK (2011) Thermal effects in laser assisted jet electrochemical machining. CIRP Ann—Manuf Technol 60(1):243–246. https://doi.org/10.1016/j.cirp.2011.03.132

  35. Skoczypiec S (2015) Application of laser and electrochemical interaction in sequential and hybrid micromachining processes. Bull Pol Acad Sci Tech Sci 63(1):305–314. https://doi.org/10.1515/bpasts-2015-0035

  36. Zhang H, Xu J, Wang J (2009) Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining. Opt Lasers Eng 47(11):1242–1249. https://doi.org/10.1016/j.optlaseng.2009.05.009

  37. Wee LM, Li L (2005) Multiple-layer laser direct writing metal deposition in electrolyte solution. Appl Surf Sci 247(1–4):285–293. https://doi.org/10.1016/j.apsusc.2005.01.142

  38. Chauvy PF, Hoffmann P, Landolt D (2003) Electrochemical micromachining of titanium using laser oxide film lithography: Excimer laser irradiation of anodic oxide. Appl Surf Sci 211(1–4):113–127. https://doi.org/10.1016/S0169-4332(03)00256-3

  39. Chauvy PF, Hoffmann P, Landolt D (2003) Applications of laser lithography on oxide film to titanium micromachining. Appl Surf Sci 208–209:165–170. https://doi.org/10.1016/S0169-4332(02)01361-2

  40. Shin HS, Chung DK, Park MS, Chu CN (2011) Analysis of machining characteristics in electrochemical etching using laser masking. Appl Surf Sci 258(5):1689–1698. https://doi.org/10.1016/j.apsusc.2011.10.010

  41. Shin HS, Park MS, Chu CN (2010) Electrochemical etching using laser masking for multilayered structures on stainless steel. CIRP Ann—Manuf Technol 59(1):585–588. https://doi.org/10.1016/j.cirp.2010.03.134

  42. Skoczypiec S, Ruszaj A (2014) A sequential electrochemical-electrodischarge process for micropart manufacturing. Precis Eng 38 (2014):680–690. https://doi.org/10.1016/j.precisioneng.2014.03.007

  43. Zeng Z, Wang Y, Wang Z, Shan D, He X (2012) A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures. Precis Eng 36(3):500–509. https://doi.org/10.1016/j.precisioneng.2012.01.005

  44. He XL, Wang YK, Wang ZL, Zeng ZQ (2011) Micro-hole drilled by EDM–ECM combined processing. Key Eng Mater 562–565:52–6

    Google Scholar 

  45. Hu MH, Li Y, Zhu XG, Tong H (2011) Influence of side-insulation film on hybrid process of micro EDM and ECM for 3D micro structures. Adv Mater Res 230–232:517–521

    Article  Google Scholar 

  46. Kurita T, Hattori M (2006) A study of EDM and ECM / ECM-lapping complex machining technology. Int J 46:1804–1810. https://doi.org/10.1016/j.ijmachtools.2005.11.009

  47. Nguyen MD, Rahman M, Wong YS (2012) Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling. CIRP Ann—Manuf Technol 61(1):191–194. https://doi.org/10.1016/j.cirp.2012.03.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Skoczypiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Skoczypiec, S. (2018). Electrochemical Methods of Micropart’s Manufacturing. In: Gupta, K. (eds) Micro and Precision Manufacturing. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-68801-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68801-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68800-8

  • Online ISBN: 978-3-319-68801-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics