Advertisement

UT Austin Villa: RoboCup 2016 3D Simulation League Competition and Technical Challenges Champions

  • Patrick MacAlpine
  • Peter Stone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

The UT Austin Villa team, from the University of Texas at Austin, won the 2016 RoboCup 3D Simulation League, winning all 14 games that the team played. During the course of the competition the team scored 88 goals and conceded only 1. Additionally the team won the RoboCup 3D Simulation League technical challenge by winning each of a series of three league challenges: free, keepaway, and Gazebo running challenge. This paper describes the changes and improvements made to the team between 2015 and 2016 that allowed it to win both the main competition and each of the league technical challenges.

Notes

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research in 2016 is supported in part by grants from NSF (CNS-1330072, CNS-1305287), ONR (21C184-01), and AFOSR (FA9550-14-1-0087). Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by UT Austin in accordance with its policy on objectivity in research.

References

  1. 1.
    MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: a champion agent in the RoboCup 3D soccer simulation competition. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012) (2012)Google Scholar
  2. 2.
    MacAlpine, P., Collins, N., Lopez-Mobilia, A., Stone, P.: UT Austin Villa: RoboCup 2012 3D simulation league champion. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS, vol. 7500, pp. 77–88. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39250-4_8CrossRefGoogle Scholar
  3. 3.
    MacAlpine, P., Depinet, M., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2014 3D simulation league competition and technical challenge champions. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 33–46. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_3CrossRefGoogle Scholar
  4. 4.
    MacAlpine, P., Hanna, J., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2015 3D simulation league competition and technical challenges champions. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 118–131. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-29339-4_10CrossRefGoogle Scholar
  5. 5.
    MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011 3D simulation team report. Technical report AI11-10, The University of Texas at Austin, Department of Computer Science, AI Laboratory (2011)Google Scholar
  6. 6.
    Boedecker, J., Asada, M.: Simspark–concepts and application in the robocup 3D soccer simulation league. In: SIMPAR-2008 Workshop on the Universe of RoboCup Simulators, Venice, Italy, pp. 174–181 (2008)Google Scholar
  7. 7.
    MacAlpine, P., Price, E., Stone, P.: SCRAM: scalable collision-avoiding role assignment with minimal-makespan for formational positioning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)Google Scholar
  8. 8.
    MacAlpine, P., Depinet, M., Stone, P.: UT Austin Villa 2014: RoboCup 3D simulation league champion via overlapping layered learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)Google Scholar
  9. 9.
    Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic environment. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 377–384. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68847-1_38CrossRefGoogle Scholar
  10. 10.
    Kuhn, H.W.: The hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  11. 11.
    MacAlpine, P., Stone, P.: Prioritized role assignment for marking. In: RoboCup 2016: Robot Soccer World Cup XX. LNAI. Springer, Heidelberg (2016)Google Scholar
  12. 12.
    Abdolmaleki, A., Simoes, D., Lau, N., Reis, L.P., Neumann, G.: Learning a humanoid kick with controlled distance. In: RoboCup 2016: Robot Soccer World Cup XX. LNAI. Springer, Heidelberg (2016)Google Scholar
  13. 13.
    Dorer, K., Kurz, V.: Learning a kick while walking in raw actuator space (2016)Google Scholar
  14. 14.
    da Silva, C., Soares, A., Argollo, E., Simões, M.A.C., Frias, D., de Souza, J.R.: Módulo cooperativo de defesa para um time de futebol de agentes humanoides autônomos. In: XIII Workshop de Trabalhos de Iniciação Científica e Graduação da Escola Regional de Computação Bahia - Alagoas - Sergipe (2015)Google Scholar
  15. 15.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Intelligent Robots and Systems (IROS) (2004)Google Scholar
  16. 16.
    MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization of an omnidirectional humanoid walk: a winning approach at the RoboCup 2011 3D simulation competition. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2012) (2012)Google Scholar
  17. 17.
    Hansen, N.: The CMA Evolution Strategy: A Tutorial (2009). http://www.lri.fr/~hansen/cmatutorial.pdf
  18. 18.
    MacAlpine, P., Stone, P.: UT Austin Villa robocup 3D simulation base code release. In: RoboCup 2016: Robot Soccer World Cup XX. LNAI. Springer, Heidelberg (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of Texas at AustinAustinUSA

Personalised recommendations