Advertisement

Selecting the Best Player Formation for Corner-Kick Situations Based on Bayes’ Estimation

  • Jordan Henrio
  • Thomas Henn
  • Tomoharu Nakashima
  • Hidehisa Akiyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

In the domain of RoboCup 2D soccer simulation league, appropriate player positioning against a given opponent team is an important factor of soccer team performance. This work proposes a model which decides the strategy that should be applied regarding a particular opponent team. This task can be realized by applying preliminary a learning phase where the model determines the most effective strategies against clusters of opponent teams. The model determines the best strategies by using sequential Bayes’ estimators. As a first trial of the system, the proposed model is used to determine the association of player formations against opponent teams in the particular situation of corner-kick. The implemented model shows satisfying abilities to compare player formations that are similar to each other in terms of performance and determines the right ranking even by running a decent number of simulation games.

Keywords

Soccer simulation Strategy selection Bayes’ estimation Earth mover’s distance Hierarchical clustering 

References

  1. 1.
    Visser, U., Drücker, C., Hübner, S., Schmidt, E., Weland, H.-G.: Recognizing formations in opponent teams. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS, vol. 2019, pp. 391–396. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_44CrossRefGoogle Scholar
  2. 2.
    Drücker, C., Hübner, S., Schmidt, E., Visser, U., Weland, H.-G.: Virtual werder. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS, vol. 2019, pp. 421–424. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_51CrossRefGoogle Scholar
  3. 3.
    Riley, P., Veloso, M.: On behavior classification in adversarial environments. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems 4, pp. 371–380. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-4-431-67919-6_35CrossRefGoogle Scholar
  4. 4.
    Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling opponent-adaptive play selection. In: Proceedings of International Conference on Automated Planning and Scheduling (ICAPS 2004) (2004)Google Scholar
  5. 5.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)CrossRefGoogle Scholar
  6. 6.
    Navarro, D., Perfors, A.: An introduction to the beta-binomial model. In: COMPSCI 3016: Computational Cognitive Science (2012)Google Scholar
  7. 7.
    Kruschke, J.K.: Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS. Academic Press/Elsevier, Cambridge (2010)zbMATHGoogle Scholar
  8. 8.
    Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS, vol. 8371, pp. 528–535. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_46CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordan Henrio
    • 1
  • Thomas Henn
    • 1
  • Tomoharu Nakashima
    • 1
  • Hidehisa Akiyama
    • 2
  1. 1.Osaka Prefecture UniversityOsakaJapan
  2. 2.Fukuoka UniversityFukuokaJapan

Personalised recommendations