Advertisement

Communication-Less Cooperation Between Soccer Robots

  • Wei Dai
  • Qinghua Yu
  • Junhao Xiao
  • Zhiqiang Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

This paper focuses on communication-less multi-robot cooperation, particularly, we present our research results on ball passing between MSL soccer robots without communication. Under this condition, the robots cannot share localization with teammates using wireless communication. Therefore, a novel method of color recognition is applied to recognize and localize the other robots. According to the positions of the teammates and obstacles, the robot that dribbles will find the best point for passing and the other robot will adjust its position and state for receiving. Two experiments are designed to test the localization accuracy with the front camera system. Finally, the method is evaluated under the 2015 MSL technique challenge rule, which proves the effectivity of the proposed method.

Keywords

Multi-robot cooperation Communication-less cooperation Soccer robots RoboCup middle size league 

References

  1. 1.
  2. 2.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot world cup initiative. In Proceedings of the First International Conference on Autonomous Agents, pp. 340–347, ACM (1997)Google Scholar
  3. 3.
    Wang, T., Dang, Q., Pan, P.: A predict-fuzzy logic communication approach for multi robotic cooperation and competition. J. Commun. 6(3), 225–231 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, T., Dang, Q., Pan, P.: A multi-robot system based on a hybrid communication approach. Stud. Media Commun. 1(1), 91–100 (2013)CrossRefGoogle Scholar
  5. 5.
    Tiderko, A., Bachran, T., Hoeller, F., et al.: RoSe — a framework for multicast communication via unreliable networks in multi-robot systems. Robot. Auton. Syst. 56(12), 1017–1026 (2008)CrossRefGoogle Scholar
  6. 6.
    Bachran, T., Bongartz, H.J., Tiderko, A.: A framework for multicast and quality based forwarding in manets, pp. 120–125, Acta Press (2005)Google Scholar
  7. 7.
    Wei, G., Jian, Y., Ju, L., Bo, X., Junwei, Y.: Cooperative location of multiple unmanned surface vessels (USVs) considering communication delay. J. Harbin Eng. Univ. 12, 003 (2013)Google Scholar
  8. 8.
    Rekleitis, I., Lee-Shue, V., New, A.P., et al.: Limited communication, multi-robot team based coverage. In: Robotics and Automation, 2004. Proceedings. ICRA 2004. 2004 IEEE International Conference on. IEEE, vol. 4, pp. 3462–3468 (2004)Google Scholar
  9. 9.
    Meng, Y., Nickerson, J.V., Gan, J.: Multi-robot aggregation strategies with limited communication. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, pp. 2691–2696 (2006)Google Scholar
  10. 10.
    Tyler, G., John, A.: Effective task allocation for evolving multi-robot teams in dangerous environments (2013)Google Scholar
  11. 11.
    Genesereth, M.R., Ginsberg, M.L., Rosenschein, J.S., Cooperation without communication. In: The National Conference on AI, Philadelphia, PA, pp. 51–57. August 1986Google Scholar
  12. 12.
    Arkin, R.C.: Cooperation without communication: multiagent schema-based robot navigation. J. Robot. Syst. 9(3), 351–364 (1992)CrossRefGoogle Scholar
  13. 13.
    Xiao, J., Lu, H., Zeng, Z., et al.: NuBot team description paper 2015. In: Proceedings of RoboCup (2015)Google Scholar
  14. 14.
    Xiong, D., Xiao, J., Lu, H., Zeng, Z., Yu, Q., Huang, K., Yi, X., Zheng, Z.: The design of an intelligent soccer-playing robot. Ind. Robot: Int. J. 43(1), 91–102 (2016)CrossRefGoogle Scholar
  15. 15.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, no. 3.2, p. 5 (2009)Google Scholar
  16. 16.
  17. 17.
    Ferman, A.M., Tekalp, A.M., Mehrotra, R.: Robust color histogram descriptors for video segment retrieval and identification. IEEE Trans. Image Process. 11(5), 497–508 (2008)CrossRefGoogle Scholar
  18. 18.
    Gönner, C., Rous, M., Kraiss, K.-F.: Real-time adaptive colour segmentation for the robocup middle size league. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 402–409. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32256-6_33CrossRefGoogle Scholar
  19. 19.
    Liu, F., Lu, H., Zheng, Z.: A modified color look-up table segmentation method for robot soccer. In: Proceedings of the 4th IEEE LARS/COMRob, vol. 7 (2007)Google Scholar
  20. 20.
    Bruce, J., Zickler, S., Licitra, M., et al.: CMDragons: dynamic passing and strategy on a champion robot soccer team. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on IEEE, pp. 4074–4079 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wei Dai
    • 1
  • Qinghua Yu
    • 1
  • Junhao Xiao
    • 1
  • Zhiqiang Zheng
    • 1
  1. 1.College of Mechatronics and AutomationNational University of Defense TechnologyChangshaChina

Personalised recommendations