Skip to main content

Computational Topology Techniques for Characterizing Time-Series Data

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVI (IDA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10584))

Included in the following conference series:

Abstract

Topological data analysis (TDA), while abstract, allows a characterization of time-series data obtained from nonlinear and complex dynamical systems. Though it is surprising that such an abstract measure of structure—counting pieces and holes—could be useful for real-world data, TDA lets us compare different systems, and even do membership testing or change-point detection. However, TDA is computationally expensive and involves a number of free parameters. This complexity can be obviated by coarse-graining, using a construct called the witness complex. The parametric dependence gives rise to the concept of persistent homology: how shape changes with scale. Its results allow us to distinguish time-series data from different systems—e.g., the same note played on different musical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The work we describe in this paper calls upon areas of mathematics—including dynamical systems, topology and persistent homology—that may not be commonly used in the data-analysis community. As a full explanation of these would require several textbook length treatments, we content ourselves with discussing how these ideas can be applied, leaving the details of the theory to references.

  2. 2.

    Landmark choice is another issue. There are a number of ways to do this; here, we evenly space the landmarks across the data.

  3. 3.

    Choosing the range and increment for \(\epsilon \) in such a plot requires some experimentation; in this paper, we use \(\epsilon _{\text {step}} = 20\) and \(\epsilon _{\text {max}}\) set for each instrument when the first 20-dimensional simplex is witnessed. This is a good compromise between effectiveness and efficiency for the data sets that we studied.

References

  1. Alexander, Z., Bradley, E., Meiss, J., Sanderson, N.: Simplicial multivalued maps and the witness complex for dynamical analysis of time series. SIAM J. Appl. Dyn. Sys. 14, 1278–1307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bradley, E., Kantz, H.: Nonlinear time-series analysis revisited. Chaos 25(9), 097610 (2015)

    Article  Google Scholar 

  3. Cvitanovic, P.: Invariant measurement of strange sets in terms of circles. Phys. Rev. Lett. 61, 2729–2732 (1988)

    Article  MathSciNet  Google Scholar 

  4. Dasu, T., Krishnan, S., Lin, D., Venkatasubramanian, S., Yi, K.: Change (detection) you can believe in: finding distributional shifts in data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 21–34. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03915-7_3

    Chapter  Google Scholar 

  5. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Alg. Geom. Topology 7(1), 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Domingos, P.: A general framework for mining massive data streams. In: Proceedings Interface 2006 (2006)

    Google Scholar 

  7. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Disc. Comp. Geom. 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelsbrunner, H., Mücke, E.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  9. Fraser, A., Swinney, H.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC, Atlanta (2010)

    Google Scholar 

  11. Garland, J., Bradley, E., Meiss, J.: Exploring the topology of dynamical reconstructions. Physica D 334, 49–59 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. AMS, vol. 157. Springer, New York (2004)

    MATH  Google Scholar 

  14. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  15. Muldoon, M., MacKay, R., Huke, J., Broomhead, D.: Topology from a time series. Physica D 65, 1–16 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Munkres, J.: Elements of Algebraic Topology. Benjamin/Cummings, Menlo Park (1984)

    MATH  Google Scholar 

  17. Rakthanmanon, T., Keogh, E., Lonardi, S., Evans, S.: Time series epenthesis: clustering time series streams requires ignoring some data. In: Proceedings ICDM, pp. 547–556. IEEE, December 2011

    Google Scholar 

  18. Robins, V.: Computational topology for point data: Betti numbers of \(\alpha \)-shapes. In: Mecke, K., Stoyan, D. (eds.) Morphology of Condensed Matter. Lecture Notes in Physics, vol. 600, pp. 261–274. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Robins, V., Abernethy, J., Rooney, N., Bradley, E.: Topology and intelligent data analysis. Intell. Data Anal. 8, 505–515 (2004)

    Google Scholar 

  20. Robins, V., Turner, K.: Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids. Physica D 334, 99–117 (2015)

    Article  MathSciNet  Google Scholar 

  21. de Silva, V., Carlsson, E.: Topological estimation using witness complexes. In: Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics, pp. 157–166. The Eurographics Association (2004)

    Google Scholar 

  22. Song, M., Wang, H.: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering. In: Priddy, K. (ed.) Proceedings of SPIE, vol. 5803, pp. 174–183. International Society for Optical Engineering (2005)

    Google Scholar 

  23. Xia, K., Feng, X., Tong, Y., Wei, G.: Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 36(6), 408–422 (2015)

    Article  Google Scholar 

  24. Zomorodian, A.: Topological data analysis. In: Advances in Applied and Computational Topology, vol 70. American Mathematical Society (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sanderson, N., Shugerman, E., Molnar, S., Meiss, J.D., Bradley, E. (2017). Computational Topology Techniques for Characterizing Time-Series Data. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68765-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68764-3

  • Online ISBN: 978-3-319-68765-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics