Skip to main content

A Multitree Genetic Programming Representation for Automatically Evolving Texture Image Descriptors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Abstract

Image descriptors are very important components in computer vision and pattern recognition that play critical roles in a wide range of applications. The main task of an image descriptor is to automatically detect micro-patterns in an image and generate a feature vector. A domain expert is often needed to undertake the process of developing an image descriptor. However, such an expert, in many cases, is difficult to find or expensive to employ. In this paper, a multitree genetic programming representation is adopted to automatically evolve image descriptors. Unlike existing hand-crafted image descriptors, the proposed method does not rely on predetermined features, instead, it automatically identifies a set of features using a few instances of each class. The performance of the proposed method is assessed using seven benchmark texture classification datasets and compared to seven state-of-the-art methods. The results show that the new method has significantly outperformed its counterpart methods in most cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available at: http://multibandtexture.recherche.usherbrooke.ca.

  2. 2.

    Available at: http://www.outex.oulu.fi/index.php?page=classification.

  3. 3.

    Available at: http://www.cb.uu.se/~gustaf/KylbergSintornRotation/.

  4. 4.

    Available at: http://www.cb.uu.se/~gustaf/texture/.

References

  1. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans. Evol. Comput. 21(1), 83–101 (2016)

    Google Scholar 

  2. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans. Evol. Comput. 18(6), 893–908 (2014)

    Article  Google Scholar 

  3. Boric, N., Estevez, P.A.: Genetic programming-based clustering using an information theoretic fitness measure. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp. 31–38. IEEE (2007)

    Google Scholar 

  4. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, Mineola (1999)

    Google Scholar 

  5. Cha, S.-H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307 (2007)

    MathSciNet  Google Scholar 

  6. Cordella, L.P., de Stefano, C., Fontanella, F., Marcelli, A.: Genetic programming for generating prototypes in classification problems. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation, pp. 1149–1155. IEEE (2005)

    Google Scholar 

  7. Ebner, M., Zell, A.: Evolving a task specific image operator. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds.) EvoWorkshops 1999. LNCS, vol. 1596, pp. 74–89. Springer, Heidelberg (1999). doi:10.1007/10704703_6

    Chapter  Google Scholar 

  8. Fu, W., Johnston, M., Zhang, M.: Distribution-based invariant feature construction using genetic programming for edge detection. Soft Comput. 19(8), 2371–2389 (2015)

    Article  Google Scholar 

  9. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Krig, S.: Computer Vision Metrics: Survey, Taxonomy, and Analysis, 1st edn. Apress, New York (2014)

    Google Scholar 

  12. Kylberg, G.: The Kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden (2011)

    Google Scholar 

  13. Kylberg, G.: Automatic virus identification using TEM: image segmentation and texture analysis. Ph.D. thesis, Division of Visual Information and Interaction, Uppsala University, Uppsala, Sweden (2014)

    Google Scholar 

  14. Lee, J.-H., Ahn, C.W., An, J.: An approach to self-assembling swarm robots using multitree genetic programming. Sci. World J. 2013, 1–10 (2013)

    Google Scholar 

  15. Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 71(1), 16–22 (2016)

    Article  Google Scholar 

  16. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

    Article  Google Scholar 

  17. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp. 701–706. IEEE (2002)

    Google Scholar 

  18. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000). doi:10.1007/3-540-45054-8_27

    Chapter  Google Scholar 

  19. Olague, G., Trujillo, L.: A genetic programming approach to the design of interest point operators. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. SCI, vol. 256, pp. 49–65. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04516-5_3

    Chapter  Google Scholar 

  20. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008). Published via http://lulu.com. (With contributions by J.R. Koza)

  21. Willis, A., Sui, Y.: An algebraic model for fast corner detection. In: Proceedings of 12th IEEE International Conference on Computer Vision, pp. 2296–2302. IEEE (2009)

    Google Scholar 

  22. Zhao, Y., Huang, D.-S., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harith Al-Sahaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Al-Sahaf, H., Xue, B., Zhang, M. (2017). A Multitree Genetic Programming Representation for Automatically Evolving Texture Image Descriptors. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics