Skip to main content

Matrix Factorization Based Benchmark Set Analysis: A Case Study on HyFlex

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

Abstract

The present paper offers an analysis strategy to examine benchmark sets of combinatorial search problems. Experimental analysis has been widely used to compare a set of algorithms on a group of instances from such problem domains. These studies mostly focus on the algorithms’ performance rather than the quality of the target benchmark set. In relation to that, the insights about the algorithms’ varying performance happen to be highly limited. The goal here is to introduce a benchmark set analysis strategy that can tell the quality of a benchmark set while allowing to retrieve some insights regarding the algorithms’ performance. A matrix factorization based strategy is utilized for this purpose. A Hyper-heuristic framework, i.e. HyFlex, involving 6 problem domains is accommodated as the testbed to perform the analysis on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The scikit-learn library is used with default values.

  2. 2.

    www.hyflex.org.

  3. 3.

    www.asap.cs.nott.ac.uk/external/chesc2011/.

  4. 4.

    http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html.

References

  1. Koren, Y., Bell, R., Volinsky, C., et al.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  2. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

    Article  Google Scholar 

  3. Mısır, M., Sebag, M.: Alors: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  5. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14(5), 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29124-1_12

    Chapter  Google Scholar 

  7. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer, Boston (2010)

    Chapter  Google Scholar 

  8. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  9. Chen, S., Li, Z., Yang, B., Rudolph, G.: Quantum-inspired hyper-heuristics for energy-aware scheduling on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 27(6), 1796–1810 (2016)

    Article  Google Scholar 

  10. Pillay, N.: A review of hyper-heuristics for educational timetabling. Ann. Oper. Res. 239(1), 3–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Terashima-Marin, H., Morán-Saavedra, A., Ross, P.: Forming hyper-heuristics with gas when solving 2D-regular cutting stock problems. In: IEEE Congress on Evolutionary Computation (CEC), vol. 2, pp. 1104–1110. IEEE (2005)

    Google Scholar 

  12. Sotelo-Figueroa, M.A., Soberanes, H.J.P., Carpio, J.M., Huacuja, H.J.F., Reyes, L.C., Alcaraz, J.A.S., Espinal, A.: Generating bin packing heuristic through grammatical evolution based on bee swarm optimization. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 655–671. Springer, Cham (2017). doi:10.1007/978-3-319-47054-2_43

    Chapter  Google Scholar 

  13. Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79305-2_4

    Chapter  Google Scholar 

  14. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring hyper-heuristic methodologies with genetic programming. In: Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence. Intelligent Systems Reference Library, vol. 1, pp. 177–201. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E., De Causmaecker, P. (eds.) Practice and Theory of Automated Timetabling IV. LNCS, vol. 2740, pp. 276–287. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45157-0_18

    Chapter  Google Scholar 

  16. Maashi, M., Kendall, G., Özcan, E.: Choice function based hyper-heuristics for multi-objective optimization. Appl. Soft Comput. 28, 312–326 (2015)

    Article  Google Scholar 

  17. Marín-Blázquez, J.G., Schulenburg, S.: A hyper-heuristic framework with XCS: learning to create novel problem-solving algorithms constructed from simpler algorithmic ingredients. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003-2005. LNCS, vol. 4399, pp. 193–218. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71231-2_14

    Chapter  Google Scholar 

  18. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). doi:10.1007/3-540-44629-X_11

    Chapter  Google Scholar 

  19. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), PP. 913–920. Atlanta, Georgia, USA (2008)

    Google Scholar 

  20. Epitropakis, M.G., Caraffini, F., Neri, F., Burke, E.K.: A separability prototype for automatic memes with adaptive operator selection. In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), PP. 70–77. IEEE (2014)

    Google Scholar 

  21. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)

    Article  Google Scholar 

  22. Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M.: Genetic programming based hyper-heuristics for dynamic job shop scheduling: cooperative coevolutionary approaches. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 115–132. Springer, Cham (2016). doi:10.1007/978-3-319-30668-1_8

    Chapter  Google Scholar 

  23. Sotelo-Figueroa, M., Soberanes, H., Carpio, J., Fraire Huacuja, H., Reyes, L., Soria Alcaraz, J.: Evolving bin packing heuristic using micro-differential evolution with indirect representation. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, vol. 451, pp. 349–359. Studies in Computational Intelligence. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI, vol. 91, pp. 331–337 (1991)

    Google Scholar 

  25. Jones, T., Forrest, S., et al.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. ICGA 95, 184–192 (1995)

    Google Scholar 

  26. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: a path to understanding problem hardness. In: AAAI, vol. 4, pp. 118–123 (2004)

    Google Scholar 

  27. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical hardness of NP-complete problems. Commun. ACM 57(5), 98–107 (2014)

    Article  Google Scholar 

  29. van Hemert, J.I.: Evolving combinatorial problem instances that are difficult to solve. Evol. Comput. 14(4), 433–462 (2006)

    Article  Google Scholar 

  30. Smith-Miles, K., van Hemert, J.I.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch problems. Oper. Res. 61(3), 563–577 (2013)

    Article  MATH  Google Scholar 

  32. Smith-Miles, K., Bowly, S.: Generating new test instances by evolving in instance space. Comput. Oper. Res. 63, 102–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malitsky, Y., Merschformann, M., O’Sullivan, B., Tierney, K.: Structure-preserving instance generation. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 123–140. Springer, Cham (2016). doi:10.1007/978-3-319-50349-3_9

    Chapter  Google Scholar 

  34. Smith-Miles, K., Tan, T.T.: Measuring algorithm footprints in instance space. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

  35. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, Hoboken (2002)

    MATH  Google Scholar 

  36. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis, vol. 344. John Wiley & Sons, Hoboken (2009)

    MATH  Google Scholar 

  38. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  39. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  40. Mısır, M.: Intelligent hyper-heuristics: a tool for solving generic optimisation problems. Ph.D. thesis, Department of Computer Science, KU Leuven (2012)

    Google Scholar 

  41. Mısır, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm portfolios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59–73. Springer, Cham (2015). doi:10.1007/978-3-319-19084-6_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mısır .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mısır, M. (2017). Matrix Factorization Based Benchmark Set Analysis: A Case Study on HyFlex. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics