Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

When subjected to a magnetic field, the magnetic sublevels of a rovibrational level can split apart and shift via what’s known as the ”Zeeman effect.” The magnitude of this shift can be related to the interaction of different types of angular momentum within the molecule, and can be a helpful tool for gaining more information about a molecule’s structure.

We present detailed measurements of the linear Zeeman shifts for the majority of all observed levels in88Sr2, most of which are made at the percent level or better. Fascinatingly, we observe certain rovibrational levels whose linear Zeeman shifts hew extremely closely to the values derived under the ideal Hund’s case (c) approximation, and others which dramatically differ from this approximation. The fact that we can see both ideal and non-ideal behavior within the same molecule is explained as a consequence of whether or not Coriolis coupling with nearby levels is allowed or forbidden for different combinations of quantum numbers.

We also present tables of quadratic (and higher order) Zeeman shifts, and derive mathematical explanations for why the magnitude of the quadratic Zeeman shift increases approximately with the bond length to the power of \(\frac {5}{2}\).

Finally, we describe the configuration of our magnetic Helmholtz coils, and show observable consequences of the 5 mV quantization of our DAQ-supplied control voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borkowski, M., Morzyński, P., Ciuryło, R., Julienne, P., Yan, M., DeSalvo, B., Killian, T.: Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atoms. Phys. Rev. A 90(3), 032713 (2014)

    Article  ADS  Google Scholar 

  2. Brown, J., Carrington, A.: Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  3. Carrington, A., Leach, C., Marr, A., Shaw, A., Viant, M., Hutson, J., Law, M.: Microwave spectroscopy and interaction potential of the long-range He…Ar+ ion. J. Chem. Phys. 102(6), 2379–2403 (1995)

    Article  ADS  Google Scholar 

  4. Friebe, J., Pape, A., Riedmann, M., Moldenhauer, K., Mehlstäubler, T., Rehbein, N., Lisdat, C., Rasel, E., Ertmer, W., Schnatz, H., Burghard, L., Gesine, G.: Absolute frequency measurement of the magnesium intercombination transition 1S0 →3P1. Phys. Rev. A 78(3), 033830 (2008)

    Article  ADS  Google Scholar 

  5. Griffiths, D.: Introduction to Quantum Mechanics, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  6. Hanneke, D., Fogwell, S., Gabrielse, G.: New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100(12), 120801 (2008)

    Article  ADS  Google Scholar 

  7. Kramida, A., Ralchenko, Y., Reader, J.: NIST atomic spectra database (ver. 5.1). National Institute of Standards and Technology, Gaithersburg, MD (2013)

    Google Scholar 

  8. LeRoy, R., Bernstein, R.: Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J. Chem. Phys. 52(8), 3869–3879 (1970)

    Article  ADS  Google Scholar 

  9. McDonald, M.: High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice. Ph.D. Thesis, Columbia University in the City of New York (2016)

    Google Scholar 

  10. McGuyer, B., Osborn, C., McDonald, M., Reinaudi, G., Skomorowski, W., Moszynski, R., Zelevinsky, T.: Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts. Phys. Rev. Lett. 111(24), 243003 (2013)

    Article  ADS  Google Scholar 

  11. McGuyer, B., McDonald, M., Iwata, G., Skomorowski, W., Moszynski, R., Zelevinsky, T.: Control of optical transitions with magnetic fields in weakly bound molecules. Phys. Rev. Lett. 115(5), 053001 (2015)

    Article  ADS  Google Scholar 

  12. McGuyer, B., McDonald, M., Iwata, G., Tarallo, M., Skomorowski, W., Moszynski, R., Zelevinsky, T.: Precise study of asymptotic physics with subradiant ultracold molecules. Nat. Phys. 11(1), 32–36 (2015)

    Article  Google Scholar 

  13. Morzyński, P., Bober, M., Bartoszek-Bober, D., Nawrocki, J., Krehlik, P., Śliwczyński, Ł., Lipiński, M., Masłowski, P., Cygan, A., Dunst, P., Garus, M., Lisak, D., Zachorowski, J., Gawlik, W., Radzewicz, C., Ciuryło, R., Zawada, M.: Absolute measurement of the 1S0 −3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link. Sci. Rep. 5, 17495 (2015)

    Google Scholar 

  14. Odom, B., Hanneke, D., D’Urso, B., Gabrielse, G.: New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97(3), 030801 (2006)

    Article  ADS  Google Scholar 

  15. Osborn, C.: The physics of ultracold Sr2 molecules: Optical production and precision measurement. Ph.D. Thesis (2014)

    Google Scholar 

  16. Porsev, S., Safronova, M., Clark, C.W.: Relativistic calculations of C 6 and C 8 coefficients for strontium dimers. Phys. Rev. A 90(5), 052715 (2014)

    Article  ADS  Google Scholar 

  17. Sansonetti, J., Nave, G.: Wavelengths, transition probaAbilities, and energy levels for the spectrum of neutral strontium (Sr I). J. Phys. Chem. Ref. Data 39(3) 033103-1 (2010)

    Article  ADS  Google Scholar 

  18. Skomorowski, W., Pawłowski, F., Koch, C., Moszynski, R.: Rovibrational dynamics of the strontium molecule in the \(A^1\varSigma _u^+\), c 3 Π u , and \(a^3\varSigma _u^+\) manifold from state-of-the-art ab initio calculations. J. Chem. Phys. 136(19), 194306 (2012)

    Google Scholar 

  19. Takasu, Y., Saito, Y., Takahashi, Y., Borkowski, M., Ciuryło, R., Julienne, P.: Controlled production of subradiant states of a diatomic molecule in an optical lattice. Phys. Rev. Lett. 108(17), 173002 (2012)

    Article  ADS  Google Scholar 

  20. Woodgate, G.: Elementary Atomic Structure. Oxford University Press, Oxford (1980)

    Google Scholar 

  21. Zeeman, P.: XXXII. On the influence of magnetism on the nature of the light emitted by a substance. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 262, 226–239 (1897)

    Google Scholar 

  22. Zelevinsky, T., Boyd, M., Ludlow, A., Ido, T., Ye, J., Ciuryło, R., Naidon, P., Julienne, P.: Narrow line photoassociation in an optical lattice. Phys. Rev. Lett. 96(20), 203201 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McDonald, M. (2018). Measurements of Zeeman Shifts. In: High Precision Optical Spectroscopy and Quantum State Selected Photodissociation of Ultracold 88Sr2 Molecules in an Optical Lattice. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68735-3_4

Download citation

Publish with us

Policies and ethics