Skip to main content

Role of Botanicals in Termite Management

  • Chapter
  • First Online:
Termites and Sustainable Management

Abstract

Plant-derived pesticides (botanical) deliver a potential alternative to highly hazardous synthetic pesticides for insect pest control. They can be derived by leaves, floral system, fruits or seeds, wood, and/or roots. The active chemical compounds are extracted via drying, grinding, and mixing the plant parts in suitable solvents. Some of the well-known botanical pesticides are pyrethrin, rotenone, sabadilla, nicotine, ryanodine, etc. Little attention has been paid to explore the use of botanicals against termites. Most of the studies are limited to the extraction of plant chemicals with water and methanol and to the application against termites to assess their killing potential. The botanical bioassays against termites seem incomplete because either some aerial parts like leaves, fruits, seeds, and stems or roots have been utilized alone. Similarly, oil extraction and plant crude extracts were not assessed for the same plants. Isolation and synthesis of active compound are also very rare. In this chapter, we review the properties of various plant parts and their potential role in termite management, highlighting the gaps concerning the available informations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acda, M. N. (2009). Toxicity, tunneling and feeding behavior of the termite, Coptotermes vastator, in sand treated with oil of the physic nut, Jatropha curcas. Journal of Insect Science, 9, 1–8.

    Article  PubMed  Google Scholar 

  • Adams, R. P. (1991). Cedar wood oil-analysis and properties. Modern Method of Plant Analysis, 12, 159–173.

    Article  CAS  Google Scholar 

  • Adams, R. P., McDaniel, C. A., & Carter, F. L. (1988). Termiticidal activities in the heartwood, bark/sapwood and leaves of Juniperus species from the United States. Biochemical Systematics and Ecology, 16, 453–456.

    Article  Google Scholar 

  • Addisu, S., Mohamed, D., & Waktole, S. (2014). Efficacy of botanical extracts against termites, Macrotermes spp., (Isoptera: Termitidae) under laboratory conditions. International Journal of Agricultural Research, 9, 60–73.

    Article  Google Scholar 

  • Adedeji, G. A., Ogunsanwo, O. Y., & Elufioye TO. (2017). Quantifications of phytochemicals and biocide actions of Lawsonia inermis linn. extracts against wood termites and fungi. International Biodeterioration and Biodegradation, 116, 155–162.

    Article  CAS  Google Scholar 

  • Ahmed, I., & Abraham, T. (2014). Studies on the effects of some potential botanicals against termite damage on hot pepper (Marakofana) at Mendi, West Wellega, Ethiopia. International Journal of Innovative and Applied Research, 2, 29–34.

    Google Scholar 

  • Ahmed, S., Riaz, M. A., & Shahid, M. (2006). Response of Microtermes obesi (Isoptera: Termitidae) and its gut bacteria towards some plant extracts. Journal of Food, Agriculture and Environment, 4, 317–320.

    Google Scholar 

  • Alavijeh, E. S., Habibpour, B., Moharramipour, S., & Rasekh, A. (2014). Bioactivity of Eucalyptus camaldulensis essential oil against Microcerotermes diversus (Isoptera: Termitidae). Journal of Crop Protection, 3, 1–11.

    Google Scholar 

  • Allen, T. C., Dicke, R. J., & Harris, H. H. (1944). Sabadilla, Schoenocaulon spp., with reference to its toxicity to houseflies. Journal of Economic Entomology, 37, 400–408.

    Article  CAS  Google Scholar 

  • Alshehry, A. Z., Zaitoun, A. A., & Abo-Hassan, R. A. (2014). Insecticidal activities of some plant extracts against subterranean termites, Psammotermes hybostoma (Desneux) (Isoptera: Rhinotermitidae). International Journal of Agricultural Science, 4, 257–260.

    Google Scholar 

  • Ambrose, A. M., & Harvey, B. H. (1936). Toxicological study of Derris. Industrial and Engineering Chemistry, 28, 815–821.

    Article  CAS  Google Scholar 

  • Arango, R. A., Green, F., III, Hintz, K., Lebow, P. K., & Miller, R. B. (2006). Natural durability of tropical and native wood against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration and Biodegradation, 57, 146–150.

    Article  Google Scholar 

  • Arihara, S., Umeyama, A., Bando, S., Imoto, S., Ono, M., & Yoshikawa, K. (2004). Three new sesquiterpenes from the black heartwood of Cryptomeria japonica. Chemical & Pharmaceutical Bulletin, 52, 463–465.

    Article  CAS  Google Scholar 

  • Aschalew, S., Diriba, G., & Demisse, A. (2005). Termite in Mana-Sibu district of Oromiya, Special Research Report. Addis Ababa: Ethiopian Agricultural Research Organization.

    Google Scholar 

  • Aschalew, S., Ahimad, I., & Tadele, T. (2008). Management of termite (Microtermes adschaggae) on hot pepper using powdered leaves and seeds of some plant species at Bako, Western Ethiopia. East African Jorunal of Sciences, 2, 41–44.

    Google Scholar 

  • Barton, D. H. R., & Meth-Cohn, O. (1999). Comprehensive natural products chemistry (Vol. 1). Oxford: Pergamon.

    Google Scholar 

  • Birkinshaw, C. R., & Colquhoun, I. C. (1998). Pollination of Ravenala madagascariensis and Parkia madagascariensis by Eulemur macaco in Madagascar. Folia Primatologica, 69, 252.

    Article  CAS  Google Scholar 

  • Bisset, N. G., Chavanel, V., Lantz, J. P., & Wolff, R. E. (1971). Constituants sesquiterpeniques et triterpeniques des rdsines du gem’e shorea. Phytochemistry, 10, 2451–2463.

    Article  CAS  Google Scholar 

  • Bloomquist, J. R. (1996). Ion channels as targets for insecticides. Annual Review of Entomology, 41, 163–190.

    Article  CAS  PubMed  Google Scholar 

  • Boué, S. M., & Raina, A. K. (2003). Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. Journal of Chemical Ecology, 29, 2575–2584.

    Article  PubMed  Google Scholar 

  • Breuer, M., & Schmidt, G. H. (1995). Influence of a short period treatment with Melia azedarach extract on food intake and growth of the larvae of Spodoptera frugiperda (Lepidoptera; Noctuidae). Journal of Plant Diseases and Protection, 102, 633–654.

    Google Scholar 

  • Bultman, J. D., Beal, R. H., & Ampong, F. F. K. (1979). Natural resistance of some tropical African woods to Coptotermes formosanus Shiraki. Forest Products Journal, 29, 46–51.

    Google Scholar 

  • Carter, F. L., Garlo, A. M., & Stanely, J. B. (1978). Termiticidal components of wood extracts: 7-methyljuglone from Diospyros virginiana. Journal of Agricultural and Food Chemistry, 26, 869–873.

    Article  CAS  Google Scholar 

  • Chang, S. T., Cheng, S. S., & Wang, S. Y. (2001). Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). Journal of Chemical Ecology, 27, 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Ohmura, W., Doi, S., & Aoyama, M. (2004). Termite feeding deterrent from Japanese larchwood. Bioresource Technology, 95, 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S. S., Chang, H. T., CL, W., & Chang, S. T. (2007). Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology, 98, 456–459.

    Article  CAS  PubMed  Google Scholar 

  • Cornelius, M. L., Grace, J. K., & Yates, J. R. (1997). Toxicity of monoterpenoids and other natural products to the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 705–708.

    Article  Google Scholar 

  • Cynthia, O. C., Precious, O., & Lynda, O. S. (2016). The toxicity and repellency of some plant extracts applied as individual and mixed extracts against termites (Macrotermes bellicosus). Journal of Entomology and Zoology Studies, 4, 406–418.

    Google Scholar 

  • Diaz, M. A., Ourisson, G., & Bisset, N. G. (1966). Etudes chimio-taxonomiques dans la famille des dipterocarpacaes–I. Phytochemistry, 5, 855–863.

    Article  CAS  Google Scholar 

  • Ding, W., & Hu, X. P. (2010). Antitermitic effect of the Lantana camara plant on subterranean termites (Isoptera: Rhinotermitidae). Insect Science, 17, 427–433.

    Google Scholar 

  • Doolittle, M., Raina, A., Lax, A., & Boopathy, R. (2007). Effect of natural products on gut microbes in Formosan subterranean termite, Coptotermes formosanus. International Biodeterioration and Biodegradation, 59, 69–71.

    Article  CAS  Google Scholar 

  • Duke, S. O., Cantrell, C. L., Meepagala, K. M., Wedge, D. E., Tabanca, N., & Schrader, K. K. (2010). Natural toxins for use in pest management. Toxins (Basel), 2, 1943–1962.

    Article  CAS  Google Scholar 

  • Ede, A. G., & Demissie, A. G. (2013). Comparative bio-activity guided characterization of biocide from Jatropha curcas and Ricinus communis L seeds oil. Journal of Pharmacognosy and Phytochemistry, 2, 176–181.

    Google Scholar 

  • Elango, G., Rahuman, A. A., Kamaraj, C., Bagavan, A., Zahir, A. A., Santhoshkumar, T., Marimuthu, S., Velayutham, K., Jayaseelan, C., Vishnu Kirthi, A., & Rajakumar, G. (2012). Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus. Industrial Crops and Products, 36, 524–530.

    Article  CAS  Google Scholar 

  • Escoubas, P., Lajide, L., & Mizutani, J. (1995). Termite antifeedant activity in Aframomum melegueta. Phytochemistry, 40, 1097–1099.

    Article  CAS  Google Scholar 

  • Fang, N., & Casida, J. (1999). Cubé resin insecticide: Identification and biological activity of 29 rotenoid constituents. Journal of Agricultural and Food Chemistry, 47, 2130–2136.

    Article  CAS  PubMed  Google Scholar 

  • Fimrite, P. (2007). Lake poisoning seems to have worked to kill invasive pike. San Francisco Chronicle. Published on October 02, 2007.

    Google Scholar 

  • Fokialakis, N., Osbrink, W. L. A., Mamonov, L. K., Gemejieva, N. G., Mims, A. B., Skaltsounis, A. L., Lax, A. R., & Cantrell, C. L. (2006). Antifeedant and toxicity effects of thiophenes from four Echinops species against the Formosan subterranean termite, Coptotermes formosanus. Pest Management Science, 62, 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Gaetano, S., & Andrew, M. (2015). Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Current Molecular Pharmacology, 8, 206–222.

    Article  CAS  Google Scholar 

  • Ganapaty, S., Thomas, P. S., Fotso, S., & Laatsch, H. (2004). Antitermitic quinines from Diospyros sylvatica. Phytochemistry, 65, 1265–1271.

    Article  CAS  PubMed  Google Scholar 

  • Gemmill-Herren, B. (2016). Pollination services to agriculture: Sustaining and enhancing a key ecosystem service. Food and Agriculture organization of the United Nations. New York: Routledge. 292pp.

    Google Scholar 

  • Grace, J. K., & Yates, J. R. (1992). Behavioural effects of a neem insecticide on Coptotermes formosanus (Isoptera: Rhinotermitidae). Tropical Pest Management, 38, 176–180.

    Article  Google Scholar 

  • Hayes, W. J. (1982). Pesticides derived from plants and other organisms. In W. J. Hayes (Ed.), Pesticides studied in man (pp. 75–111). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Hayes, W. J. (1991). Handbook on pesticides (Vol. 1). Jamestown Road: Academic Press. 1174 pp.

    Google Scholar 

  • Himmi, S. K., Tarmadi, D., Ismayati, M., & Yusuf, S. (2013). Bioefficacy performance of neem-based formulation on wood protection and soil barrier against subterranean termite, Coptotermes gestroi Wasmann (Isoptera: Rhinotermitidae). Procedia Environmental Sciences, 17, 135–141.

    Article  CAS  Google Scholar 

  • Hiremath, I. G., Young Joon, A., Kim-Soon, I., & Kim, S. I. (1997). Insecticidal activity of Indian plant extracts against Nilaparvata lugens (Homoptera: Delphacidae). Applied Entomology and Zoology, 32, 159–166.

    Article  Google Scholar 

  • Ikeda, T., Takahashi, M., & Nishimoto, K. (1978). Antitermitic components of Kaya wood, Torreya nucifera Sieb. Et Zucc. MokuzaiGakkaishi, 24, 262–266.

    CAS  Google Scholar 

  • Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.

    Article  CAS  PubMed  Google Scholar 

  • Isman, M. B., Miresmailli, S., & Machial, C. (2011). Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry Reviews, 10, 197–204.

    Article  CAS  Google Scholar 

  • Khan, Z. R., & Saxena, R. C. (1986). Effect of steam distillate extracts of resistant and susceptible rice cultivars on behavior of Sogatella furcifera (Homoptera: Delphacidae). Journal of Economic Entomology, 79, 928–935.

    Article  Google Scholar 

  • Kinyanjui, T., Gitu, P. M., & Kamau, G. N. (2000). Potential antitermite compounds from Juniperus procera extracts. Chemosphere, 41, 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  • Lajide, L., Escoubas, P., & Mizutani, J. (1995). Termite antifeedant activity in Xylopia aethiopica. Phytochemistry, 40, 1105–1112.

    Article  CAS  Google Scholar 

  • Lima, R. K., Cardoso, M. G., Moraes, J. C., Andrade, M. A., Melo, B. A., & Rodrigues, V. G. (2010). Caracterização química e atividade inseticida do óleo essencial de Ageratum conyzoides L. sobre a lagarta-do-cartucho Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae). Bioscience, 26, 1–5.

    Google Scholar 

  • Lima, J. K. A., Albuquerque, E. L. D., Santos, A. C. C., Oliveira, A. P., Araújo, A. P. A., Blank, A. F., Arrigoni-Blank, M. F., Alves, P. B., & Santos, D. A. (2013). Biotoxicity of some plant essential oils against the termite Nasutitermes corniger (Isoptera: Termitidae). Industrial Crops and Products, 47, 246–251.

    Article  CAS  Google Scholar 

  • Lin, T. S., & Yin, H. W. (1995). The effects of Cinnamomum spp. oils on the control of the termite Coptotermes formosanus Shiraki. Taiwan Forestry Research Institute New Series, 10, 459–464.

    Google Scholar 

  • Liu, S. Y., Sporer, F., Wink, M., Jouurdane, J., Henning, R., Li, Y. L., & Ruppel, A. (1997). Anthraquinones in Rheum palmantum and Rumex dentatus (Polygonaceae) and phorbol esters in Jatropha curcas (Euphorbiaceae) with molluscicidal activity against the Schistosome vector snails Oncomelania, Biomphalaria and Bulinus. Tropical Medicine & International Health, 2, 179–188.

    Article  CAS  Google Scholar 

  • Matsumura, F. (1975). Toxicology of insecticides Fumio Matsumura. Lower John Street: Plenium Press. 493pp.

    Book  Google Scholar 

  • McDaniel, C. A. (1992). Major antitermitic components of the heartwood of southern catalpa. Journal of Chemical Ecology, 18, 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Meepagala, K. M., Kuhajek, J. M., Sturtz, G., Wedge, D. E., & Vulgarone, B. (2003). The antifungal constituent in the steam-distilled fraction of Artemisia douglasiana. Journal of Chemical Ecology, 29, 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  • Meepagala, K. M., Osbrink, W., Sturtz, G., & Lax, A. (2006). Plant-derived natural products exhibiting activity against Formosan subterranean termites (Coptotermes formosanus). Pest Management Science, 62, 565–570.

    Article  CAS  PubMed  Google Scholar 

  • Messer, A., McCormick, K., Sunjaya Hagedorn, H. H., Tumbel, F., & Meinwald, J. (1990). Defensive role of tropical tree resins: Antitermitic sesquiterpenes from Southeast Asian dipterocarpaceae. Journal of Chemical Ecology, 16, 3333–3352.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf RL (2000) Insect control: Ullmann’s Encyclopedia of Industrial Chemistry. doi:https://doi.org/10.1002/14356007.a14_263.

  • Metcalf, R. L. (2007). Insect control: Ullmann’s Encyclopedia of Industrial Chemistry (7th ed.). New York: Wiley. 9 pp.

    Google Scholar 

  • Moi, L. C. (1980). A new laboratory method for testing the resistance of particle boards to the drywood termite Cryptotermes cynocephalus. Malaysian Forest, 43, 350–355.

    Google Scholar 

  • Muthukrishnan, J., & Pushpalatha, E. (2001). Effects of plant extracts on fecundity and fertility of mosquitoes. Journal of Applied Entomology, 125, 31–35.

    Article  Google Scholar 

  • Nagnan, P., & Clement, J. L. (1990). Terpenes from the maritime pine Pinus pinaster: Toxins for subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae). Biochemical Systematics and Ecology, 18, 13–16.

    Article  CAS  Google Scholar 

  • Nakayama, F. S., & Osbrink, W. L. (2010). Evaluation of kukui oil (Aleurites moluccana) for controlling termites. Industrial Crops and Products, 31, 312–315.

    Article  CAS  Google Scholar 

  • Nellis, D. N. (1994). Seashore plants of South Florida and the Caribbean (p. 160). Sarasota: Pineapple Press.

    Google Scholar 

  • Nwosu, M. O., & Okafor, J. I. (1995). Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses, 38, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Ohtoko, K., Iida, T., Tokura, M., Moriya, S., Usami, R., Horikoshi, K., & Kudo, T. (2000). Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha and Holomastigotoides, and parabasalian symbionts in the hindgut of termites. The Journal of Eukaryotic Microbiology, 47, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Ohmura, W., Doi, S., Aoyama, M., & Ohara, S. (2000). Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. Journal of Wood Science, 46, 149–153.

    Article  CAS  Google Scholar 

  • Pandey, A., Chattopadhyay, P., Banerjee, S., Pakshirajan, K., & Singh, L. (2012). Antitermitic activity of plant essential oils and their major constituents against termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of North East India. International Biodeterioration and Biodegradation, 75, 63–67.

    Article  CAS  Google Scholar 

  • Park, I. K., & Shin, S. C. (2005). Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry, 53, 4388–4392.

    Article  CAS  PubMed  Google Scholar 

  • Raina, A., Bland, J., Doolittle, M., Lax, A., Boopathy, R., & Folkins, M. (2007). Effect of orange oil extract on the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100, 880–885.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-chilpa, R., Viveros-rodriguez, L. N., Gomez-garibay, Z. F., & Alavez-solano, D. (1995). Antitermitic activity of lonchocarpus castilloi flavonoids and heartwood extracts. Journal of Chemical Ecology, 21, 455–463.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D. P., Messer, A. C., Greenberg, S., Hagedorn, H. H., & Meinwald, J. (1989). Defensive sesquiterpenoids from a dipterocarp (Dipterocarpus kerrii). Journal of Chemical Ecology, 15, 731–747.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D. P., Messer, A. C., Newton, B. A., & Lindeman, N. I. (1991). Identification and preparation of antiinsectan dienols from Dipterocarpus kerrii tree resins. Journal of Chemical Ecology, 17, 663–685.

    Article  CAS  PubMed  Google Scholar 

  • Rodgman, A., & Perfetti, T. A. (2009). The chemical components of tobacco and tobacco smoke (p. 1840). Boca Raton: CRC Press.

    Google Scholar 

  • Roskov, Y., Kunze, T., Orrell, T., Abucay, L., Paglinawan, L., Culham, A., Bailly, N., Kirk, P., Bourgoin, T., Baillargeon, G., Decock, W., De Wever, A., & Didžiulis, V. (2014) .Species 2000 and ITIS catalogue of life: 2014 annual checklist. Species 2000: Reading, UK. Retrieved 20 March 2017.

    Google Scholar 

  • Roszaini, K., Salmiah, U., & MohdDahlan, J. (2006). Natural resistance of timbers to attack: Laboratory evaluation of the resistance of Malaysian wood against Coptotermes curvignathus (Holmgren). Journal of the Institute of Wood Science, 17, 178–182.

    Article  Google Scholar 

  • Sakasegawa, M., Hori, K., & K Yatagi, K. (2003). Composition and anti-termite activities of essential oils and Melaleuca species. Journal of Wood Science, 49, 181–187.

    Article  CAS  Google Scholar 

  • Sbeghen, A. C., Dalfovov, V., Serafini, L. A., & De-Barros, N. M. (2002). Repellence and toxicity of basil, citronella, ho-sho and rosemary oils for the control of the termite, Cryptotermes brevis (Isoptera: Kalotermitidae). Sociobiology, 40, 585–594.

    Google Scholar 

  • Scheffrahn, R. H., & Rust, M. K. (1983). Drywood termite feeding deterrents in sugar pine and antitermitic activity of related compounds. Journal of Chemical Ecology, 9, 39–55.

    Article  CAS  PubMed  Google Scholar 

  • Scheffrahn, R. H., Hsu, R. C., NY, S., Huffman, J. B., Midland, S. L., & Sims, J. J. (1988). Allelochemical resistance of bald cypress, Taxodium distichum, heartwood to the subterranean termite, Coptotermes formosanus. Journal of Chemical Ecology, 14, 765–776.

    Article  CAS  PubMed  Google Scholar 

  • Schulte, A., & Schone, D. (1996). Dipterocarp forest ecosystems: towards sustainable management. Ltd, Ferrar Road: World Scientific Publishing co. Pvt. 949 pp.

    Book  Google Scholar 

  • Sen-Sarma, P. K. (1963). Studies on the natural resistance of timbers to termites. I. Observations on the longevity of the test termite Heterotermes indicola Wasm in the saw dust from forty common Indian timbers. Indian Forest Bulletin (N.S.) Entomology, 220, 1–3.

    Google Scholar 

  • Sen-Sarma, P. K., & Chatterjee, P. N. (1968). Studies on the natural resistance of timbers to termite attack. V. Laboratory evaluation of the resistance of Indian wood to Microcerotermes beesoni Snyder (Termitidae, Amitermitinae). Indian Forest, 94, 694–704.

    Google Scholar 

  • Sharma, R. N., Tungikar, V. B., Pawar, P. V., & Vartak, P. H. (1994). Vapour toxicity and repellency of some oils and terpenoids to the termite, Odontoterme brunneus. Insect Science Application, 15, 495–498.

    CAS  Google Scholar 

  • Sharma, R. N., Tare, V., & Pawan, P. (1999). Toxic action of some plant extracts against selected insect pest and vectors. Pestology, 23, 30–37.

    Google Scholar 

  • Shi, J., Li, Z., Izumi, M., Baba, N., & Nakajima, S. (2008). Termiticidal activity of diterpenes from the roots of Euphorbia kansui. Zeitschrift für Naturforschung. Section C, 63, 51–58.

    CAS  Google Scholar 

  • Shiberu, T., Ashagre, H., & Negeri, M. (2013). Laboratory evaluation of different botanicals for the control of termite, Microterms spp (Isoptera: Termitidae). Open Access Scientific Reports, 2, 1–3.

    Google Scholar 

  • Silva, A. C., Monteiro, M. B. B., Brazolin, S., Lopez, G. A. C., Richter, A., & Braga, M. R. (2007). Biodeterioration of brazilwood Caesalpinia echinata lam. (Leguminosae: Caesalpinioideae) by rot fungi and termites. International Biodeterioration and Biodegradation, 60, 285–292.

    Article  CAS  Google Scholar 

  • Singh, N., & Kumar, S. (2008). Anti termite activity of Jatropha curcas Linn. Biochemical. Journal of Applied Sciences and Environmental Management, 12, 67–69.

    Google Scholar 

  • Singh, G., Singh, O. P., Prasad, Y. R., De-Lampasona, M. P., & Catalan, C. (2004). Chemical and insecticidal investigations in leaf oil of Coleus amboinicus Lour. Flavour and Fragrance Journal, 17, 440–442.

    Article  CAS  Google Scholar 

  • Solsoloy, A. D., & Solsoloy, T. S. (1997). Pesticidal efficacy of the formulated physic nut, Jatropha curcas oil on pests of selected field crops. The Philippine Journal of Science, 124, 59–74.

    Google Scholar 

  • Stenersen, J. (2004). Chemical pesticides: Mode of action and toxicology (p. 265). Boca Raton: CRC Press/LLC.

    Book  Google Scholar 

  • Tellez, M., Estell, R., Fredrickson, E., Powell, J., Wedge, D., Schrader, K., & Kobaisy, M. (2001). Extracts of Flourensia cernua (l): volatile constituents and antifungal, antialgal, and antitermite bioactivities. Journal of Chemical Ecology, 27, 11.

    Article  Google Scholar 

  • Thambidurai, S. (2002). Termite control using natural products. Indigenous Agriculture News, 1 9.

    Google Scholar 

  • Ujváry, I. (1999). Nicotine and other insecticidal alkaloids. In I. Yamamoto & J. Casida (Eds.), Nicotinoid insecticides and the nicotinic acetylcholine receptor (pp. 29–69). Tokyo: Springer-Verlag.

    Chapter  Google Scholar 

  • Verma, R. K., & Verma, S. K. (2006). Phytochemical and termiticidal study of Lantana camara Var. aculeata leaves. Fitotrapia, 77, 466–468.

    Article  Google Scholar 

  • Verma, M., Sharma, S., & Parshad, R. (2009). Biological alternatives for termite control. International Biodeterioration and Biodegradation, 63, 959–972.

    Article  CAS  Google Scholar 

  • Verma, M., Pradhan, S., Sharma, S., Naik, S. N., & Prasad, R. (2011). Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). International Biodeterioration and Biodegradation, 65, 877–882.

    Article  CAS  Google Scholar 

  • Verma, S., Verma, M., Sharma, S., & Malik, A. (2013). Determination of phytocomponents by GC-MS analysis of Jatropha curcas root and its termiticidal activity. Journal of Ecology and Environmental Sciences, 39, 159–169.

    Google Scholar 

  • Verma, S., Sharma, S., & Malik, A. (2016). Termiticidal and repellency efficacy of botanicals against Odontotermes obesus. International Journal of Research in Biosciences, 5, 52–59.

    Google Scholar 

  • Watanabe, Y., Mihara, R., Mitsunaga, T., & Yoshimura, T. (2005). Termite repellent sesquiterpenoids from Callitris glaucophylla heartwood. Journal of Wood Science, 51, 514–519.

    Article  CAS  Google Scholar 

  • Weinzierl, R., & Henn, T. (1994). Botanical insecticides and insecticidal soaps. In A. R. Leslie (Ed.), Handbook of integrated pest management for turf and ornamentals (p. 627). Washington, DC: US Environmental Protection agency.

    Google Scholar 

  • Wheeler, D. A., & Isman, M. (2001). Antifeedant and toxic activity off Trichilia Americana extract against the larvae of Spodoptera litura. Entomologia Experimentalis et Applicata, 98, 9–16.

    Article  Google Scholar 

  • Yatagai, M., Nishimoto, M., Ohira, K. H. T., & Shibata, A. (2002). Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science, 48, 338–342.

    Article  CAS  Google Scholar 

  • Yuan, Z., & Hu, X. P. (2012). Repellent, antifeedant and toxic activities of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 105, 2115–2121.

    Article  PubMed  Google Scholar 

  • Zhao, B., Grant, G. G., Langevin, D., & MacDonald, L. (1998). Deterring and inhibiting effects of quinolizidine alkaloids on the spruce budworm (Lepidoptera: Tortricidae) oviposition. Environmental Entomology, 27, 984–992.

    Article  CAS  Google Scholar 

  • Zhu, B. C. R., Henderson, G., Chen, F., Fei, H., & Laine, R. A. (2001a). Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite. Journal of Chemical Ecology, 27, 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B. C. R., Henderson, G., Chen, F., Maistrello, L., & Laine, R. A. (2001b). Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). Journal of Chemical Ecology, 27, 523–531.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Kamran Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S.K., Dale-Skey, N., Khan, M.A. (2018). Role of Botanicals in Termite Management. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-68726-1_8

Download citation

Publish with us

Policies and ethics