Skip to main content

The Fungus-Growing Termites: Biology, Damage on Tropical Crops and Specific Management

  • Chapter
  • First Online:
Termites and Sustainable Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Termites have a significant ecological role in natural, tropical ecosystems. However, some species (around 10%) have potential to become pests in agricultural systems. In particular, some species from the family Macrotermitinae, also known as fungus-growing termites, are described as significant crop pests. Widely present in Africa and Asia but absent from the other continents, these termites are featured by an original digestive symbiosis with a basidiomycete fungus belonging to the genus Termitomyces. This specific fungus allows a fast and efficient digestion of plant material by the host. Consequently, these termites have a great ability to adapt to various food sources, making them a potentially harmful group during the introduction of new crops. Despite the economic impact of these crop pests, there is to date no method for rapid and specific management of these insects. The existing control strategies have weak efficiency and require excessive amounts of chemicals. Generally, these techniques consist of repeated spraying of pesticides on the floor, leading to a more or less massive destruction of nontarget species and a gradual deterioration of the environment. More specific control methods have been tested as alternatives and have clearly shown better efficiency, compared to conventional methods. These are mainly based on baits treated with attractants (pheromones) or on growth inhibitors specifically targeting the fungal symbiont. This chapter provides a review of the biology of fungus-growing termites, focusing on their specific nutrition mode, and presents the most recent methodology used for their management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Pleometrosis is the co-foundation by many alates.

References

  • Aanen, D. K. (2006). As you reap, so shall you sow: Coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biology Letters, 2, 209–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aanen, D. K., & Eggleton, P. (2005). Fungus-growing termites originated in African rain forest. Current Biology, 15, 851–855.

    Article  CAS  PubMed  Google Scholar 

  • Aanen, D. K., & Jacobus, J. B. (2006). The evolutionary origin and maintenance of the mutualistic symbiosis between termites and fungi. In K. Bourtzis & T. A. Miller (Eds.), Insect symbiosis (Vol. 2, pp. 79–95). London: CRC Press.

    Chapter  Google Scholar 

  • Aanen, D. K., Eggleton, P., Rouland-Lefèvre, C., Guldberg-Frøslev, T., Rosendahl, S., & Boomsma, J. J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. PNAS, 99, 14887–14892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aanen, D. K., Ros, V. I., de Fine Licht, H. H., Mitchell, J., de Beer, Z. W., Slippers, B., Rouland-Lefèvre, C., & Boomsma, J. J. (2007). Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evolutionary Biology, 7, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aanen, D. K., de Fine Licht, H. H., Debets, A. J. M., Kerstes, N. A. G., Hoekstra, R. F., & Boomsma, J. J. (2009). High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science, 326, 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  • Abushama, F. T., & Kambal, M. A. (1977). The role of sugars in the food-selection of the termite Microtermes traegardhi (Sjost.) Zeitschrift für Angewandte Entomologie, 84, 250–255.

    Article  CAS  Google Scholar 

  • Adams, E. S. (1991). Nest-mate recognition based on heritable odors in the termite Microcerotermes arboreus. PNAS, 88, 2031–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aisagbonhi, C. I. (1985). A survey of the destructive effect of Macrotermes bellicosus Smeathman (Isoptera: Termitidae – Macrotermitinae) on coconut seednuts at NIFOR, Benin, Nigeria. International Journal of Pest Management, 35, 380–381.

    Google Scholar 

  • Aldrich, B. T., & Kambhampati, S. (2007). Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity, 99, 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Badertscher, S., Gerber, C., & Leuthold, R. H. (1983). Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behavioral Ecology and Sociobiology, 12, 115–119.

    Article  Google Scholar 

  • Bagine, R. K. N., Brandl, R., & Kaib, M. (1994). Species delimitation in Macrotermes (Isoptera: Macrotermitidae): Evidence from Epicuticular Hydrocarbons, morphology, and ecology. Annals of the Entomological Society of America, 87, 498–506.

    Article  Google Scholar 

  • Bagnères, A., & Blomquist, G. (2010). Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In G. J. Blomquist & A. G. Bagnères (Eds.), Insect hydrocarbons (pp. 75–99). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Bagnères, A. G., & Hanus, R. (2015). Communication and social regulation in termites. In L. Aquiloni & E. Tricarico (Eds.), Social recognition in invertebrates (pp. 193–248). Cham: Springer.

    Chapter  Google Scholar 

  • Bagneres, A. G., Killian, A., Clement, J. L., & Lange, C. (1991). Interspecific recognition among termites of the genus Reticulitermes: Evidence for a role for the cuticular hydrocarbons. Journal of Chemical Ecology, 17, 2397–2420.

    Article  CAS  PubMed  Google Scholar 

  • Bastien, G., Arnal, G., Bozonnet, S., Laguerre, S., Ferreira, F., Fauré, R., Henrissat, B., Lefèvre, F., Robe, P., Bouchez, O., Noirot, C., Dumon, C., & O’Donohue, M. (2013). Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnology for Biofuels, 6, 1–15.

    Article  CAS  Google Scholar 

  • Beemelmanns, C., Guo, H., Rischer, M., & Poulsen, M. (2016). Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry, 12, 314–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benmoussa-Haîchour, D., Reversat, G., & Rouland, C. (1998). Sensitivity of the different castes of higher termites to an infection with entomopathogenic nematodes – role of the lipids composition. Actes Coll Insect Soc, 11, 45–52.

    Google Scholar 

  • Bignell, D. E. (2006). Termites as soil engineers and soil processors. In H. König & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 183–220). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (1995). On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Sociaux, 42, 57–69.

    Article  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 363–387). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Black, H. I. J., & Okwakol, M. J. N. (1997). Soil biodiversity, agricultural intensification and agroecosystem function in the tropics: The role of termites. Applied Soil Ecology, 6, 37–53.

    Article  Google Scholar 

  • Bobé, A., Cooper, J. F., Coste, C. M., & Muller, M. A. (1998). Behaviour of fipronil in soil under Sahelian plain field conditions. Pesticide Science, 52, 275–281.

    Article  Google Scholar 

  • Bordereau, C., & Pasteels, J. M. (2011). Pheromones and chemical ecology of dispersal and foraging in termites. In E. D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 279–320). Dordrecht: Springer.

    Google Scholar 

  • Botha, W. J., & Eicker, A. (1992). Nutritional value of Termitomyces mycelial protein and growth of mycelium on natural substrates. Mycological Research, 96, 350–354.

    Article  Google Scholar 

  • Boucias, D. G., Cai, Y., Sun, Y., Lietze, V. U., Sen, R., Raychoudhury, R., & Scharf, M. E. (2013). The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molecular Ecology, 22, 1836–1853.

    Article  CAS  PubMed  Google Scholar 

  • Brandl, R., Hacker, M., Bagine, N. R. K., & Kaib, M. (2001). Geographic variation of polygyny in the termite Macrotermes michaelseni (Sjöstedt). Insectes Sociaux, 48, 134–137.

    Article  Google Scholar 

  • Brandl, R., Hacker, M., Bagine, R. K. N., & Kaib, M. (2004). Yearly variation in polygyny in the termite Macrotermes michaelseni (Sjöstedt). Insectes Sociaux, 51, 294–298.

    Article  Google Scholar 

  • Brown, K. W. (1965). Termite control research in Uganda (with special reference to the control of attacks in Eucalyptus plantations). East Afr Agr Forest J, 31, 218–223.

    Google Scholar 

  • Brune, A., & Dietrich, C. (2015). The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology, 69, 145–166.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, R. D. (1981). Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia, 51, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Carr, G., Poulsen, M., Klassen, J. L., Hou, Y., Wyche, T. P., Bugni, T. S., Currie, C. R., & Clardy, J. (2012). Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of Vinylamycin. Organic Letters, 14, 2822–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilima, C. Z. (1991). Termite control in young Eucalyptus plantation in Malawi using controlled release insecticides. Common Forest Review, 70, 237–247.

    Google Scholar 

  • Clément, J. L., & Bagnères, A. G. (1998). Nestmate recognition in termites. In R. K. Vander Meer, M. D. Breed, K. Espelie, & M. L. Winston (Eds.), Pheromone communication in social insects: Ants, wasps, bees and termites (pp. 125–155). Boulder: Westview Inc Col.

    Google Scholar 

  • Coaton, W. (1961). Association of termites and fungi. African Wild life, 15, 39–54.

    Google Scholar 

  • Collins, N. M. (1981). Consumption of wood by artificially isolated colonies of the fungus-growing termite Macrotermes bellicosus. Entomologia Experimentalis et Applicata, 29, 313–320.

    Article  Google Scholar 

  • Collins, N. M. (1983). The utilization of nitrogen resources by termites (Isoptera). In J. Lee, S. McNeill, & I. Rorison (Eds.), Nitrogen as an ecological factor (pp. 381–412). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Collins, N. M. (1984). Termite damage and crop loss studies in Niger- assessment of damage to upland sugarcane. Tropical Pest Management, 30, 26–28.

    Article  Google Scholar 

  • Copren, K. A., Nelson, L. J., Vargo, E. L., & Haverty, M. I. (2005). Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Molecular Phylogenetics and Evolution, 35, 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Leonardo, A. M., Casarin, F. E., & Lima, J. T. (2009). Chemical communication in isoptera. Neotropical Entomology, 38, 1–6.

    Article  Google Scholar 

  • Cowie, R., & Wood, T. (1989). Damage to crops, forestry and rangeland by fungus-growing termites (Termitidae: Macrotermitinae) in Ethiopia. Sociobiology, 15, 139–153.

    Google Scholar 

  • Darlington, J. (1985). Multiple primary reproductives in the termite Macrotermes michaleseni (Sjöstedt). In J. Watson, B. Okot-Kotber, & C. Noirot (Eds.), Caste differentiation in social insects (pp. 187–200). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Darlington, J. P. E. C. (1988). Multiple reproductives in nests of Macrotermes herus (Isoptera: Termitidae). Sociobiology, 14, 347–351.

    Google Scholar 

  • Darlington, J., Zimmerman, P., & Greenberg, J. (1997). Production of metabolic gases by nestsof the termite Macrotermes jeanneli in Kenya. Journal of Tropical Ecology, 13, 491–510.

    Article  Google Scholar 

  • DeFine Licht, H. H., Andersen, A., & Aanen, D. K. (2005). Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycological Research, 109, 314–318.

    Article  Google Scholar 

  • DeFine Licht, H. H., Boomsma, J. J., & Aanen, D. K. (2006). Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Molecular Ecology, 15, 3131–3138.

    Article  CAS  Google Scholar 

  • DeFine Licht, H. H., Boomsma, J. J., & Aanen, D. K. (2007). Asymmetric interaction specificity between two sympatric termites and their fungal symbionts. Ecological Entomology, 32, 76–81.

    Article  Google Scholar 

  • Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing Rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under In Vitro conditions. Current Microbiology, 54, 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, C., Köhler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events. AEM, 80, 2261–2269.

    Article  CAS  Google Scholar 

  • Ding, W., & Hu, X. P. (2010). Antitermitic effect of the Lantana camara plant on subterranean termites (Isoptera: Rhinotermitidae). Insect Science, 17, 427–433.

    Google Scholar 

  • Diouf, M., Roy, V., Mora, P., Frechault, S., Lefebvre, T., Hervé, V., Rouland-Lefèvre, C., & Miambi, E. (2015). Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae, Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLOS ONE, 10(10), e0140014.

    Google Scholar 

  • Dong, C., Zhang, J., Huang, H., Chen, W., & Hu, Y. (2009). Pathogenicity of a new China variety of Metarhizium anisopliae (M. Anisopliae var. Dcjhyium) to subterranean termite Odontotermes formosanus. Microbiological Research, 164, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Duringer, P., Schuster, M., Genise, J. F., Likius, A., Mackaye, H. T., Vignaud, P., & Brunet, M. (2006). The first fossil fungus gardens of Isoptera: Oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin). Naturwissenschaften, 93, 610–615.

    Article  CAS  PubMed  Google Scholar 

  • Duringer, P., Schuster, M., Genise, J. F., Mackaye, H. T., Vignaud, P., & Brunet, M. (2007). New termite trace fossils: Galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene–Lower Pliocene). Palaeogeography Palaeoclimatology, 251, 323–353.

    Article  Google Scholar 

  • Eggleton, P. (2000). Global patterns of termite diversity. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 25–51). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Eggleton, P. (2006). The termite gut habitat: Its evolution and co-evolution. In H. Konig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 373–404). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Eggleton, P. (2011). An introduction to termites: Biology, taxonomy and functional morphology. In E. D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Eggleton, P., & Davies, R. G. (2003). Isoptera, termites. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 654–660). Chicago: University of Chicago Press.

    Google Scholar 

  • El Amin, E. M., Ishag, H. M., & Burhan, H. O. (1983). Important factors affecting the yield of groundnuts (Arachis hypogaea L) in the Sudan. Zeitschrift für Angewandte Zoologie, 70, 29–55.

    Google Scholar 

  • El Bakri, A., Eldein, N., Kambal, M., Thomas, R., & Wood, T. (1989). Effect of fungicide impregnated food on the viability of fungus combs and colonies of Microtermes sp. nr. albopartitus (Isoptera: Macrotermitinae). Sociobiology, 15, 175–180.

    Google Scholar 

  • Engel, M. S., & Krishna, K. (2004). Family-group names for termites (Isoptera). American Museum Novitates, 3432, 1–9.

    Article  Google Scholar 

  • Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009). Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27.

    Article  Google Scholar 

  • Estrada-Pena, A., Castella, J., & Moreno, J. A. (1994). Using cuticular hydrocarbon composition to elucidate phylogenies in tick populations (Acari: Ixodidae). Acta Tropica, 58, 51–71.

    Article  CAS  PubMed  Google Scholar 

  • FroSlev, T. G., Aanen, D. K., Laessoe, T., & Rosendahl, S. (2003). Phylogenetic relationships of Termitomyces and related taxa. Mycological Research, 107, 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  • Grasse, P. P. (1982). Termitologia. Tome I: Anatomie, Physiologie et Reproduction de Termites (p. 676). Paris: Ed Masson.

    Google Scholar 

  • Grasse, P. P. (1984). Termitologia: Tome II Fondation des societes, constructions (p. 613). Paris: Ed Masson.

    Google Scholar 

  • Grasse, P. P., & Noirot, C. (1958). La meule des termites champignonnistes et sa signification symbiotique. Annales des Sciences Naturelles – Zoologie et Biologie Animale, 11, 113–128.

    Google Scholar 

  • Gui-Xiang, L., Zi-Rong, D., & Biao, Y. (1994). Introduction to termite research in China. Journal of Applied Entomology, 117, 360–369.

    Article  Google Scholar 

  • Guo, L., Quilici, D. R., Chase, J., & Blomquist, G. J. (1991). Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochemistry, 21, 327–333.

    Article  CAS  Google Scholar 

  • Hacker, M., Kaib, M., Bagine, R. K. N., Epplen, J. T., & Brandl, R. (2005). Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Molecular Ecology, 14, 1527–1532.

    Article  CAS  PubMed  Google Scholar 

  • Han, S. H., & Ndiaye, A. B. (1996). Dégâts causés par les termites (Isoptera) sur les arbres fruitiers dans la region de Dakar (Sénégal). Actes Coll. Insectes Sociaux, 10, 111–117.

    Google Scholar 

  • Han, S. H., & Ndiaye, A. B. (1998). L’attaque des cultures maraîchères par les termites (Isoptera) dans la région de Dakar (Sénégal). Actes Coll Insectes Sociaux, 11, 37–43.

    Google Scholar 

  • Han, S. H., Tokro, G. P., Tano, Y., & Lepage, M. (1998). Dégâts des termites dans les plantations de palmiers à huile en Côte d’Ivoire: évaluation et méthode de lutte. Plantations Rech Dévelop, 5, 119–126.

    Google Scholar 

  • Harris, W. (1969). Termites as pests of crops and trees (p. 41). London: Common Wealth Agricultural Bureau.

    Google Scholar 

  • Hashmi, A. A., Hussain, M. M., & Itaf, M. (1983). Insect pest complex of wheat crop. Pakistan Journal of Zoology, 15, 169–176.

    Google Scholar 

  • Haverty, M. I., & Nelson, L. J. (1997). Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) from northern California indicate undescribed species. Comparative Biochemistry and Physiology. B, 118, 869–880.

    Article  Google Scholar 

  • Haverty, M. I., & Thorne, B. L. (1989). Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). Journal of Insect Behavior, 2, 523–543.

    Article  Google Scholar 

  • Haverty, M. I., Copren, K. A., Getty, G. M., & Lewis, V. R. (1999). Agonistic behavior and cuticular hydrocarbon phenotypes of colonies of Reticulitermes (Isoptera: Rhinotermitidae) from northern California. Annals of the Entomological Society of America, 92, 269–277.

    Article  Google Scholar 

  • Haverty, M. I., Woodrow, R. J., Nelson, L. J., & Grace, J. K. (2000). Cuticular hydrocarbons of termites of the Hawaiian islands. Journal of Chemical Ecology, 26, 1167–1191.

    Article  CAS  Google Scholar 

  • Heim, R. (1977). Termites et champignons (p. 177). Paris: Ed Société Nouvelle des éditions Boubée.

    Google Scholar 

  • Hinze, B., Crailsheim, K., & Leuthold, H. R. (2002). Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insectes Sociaux, 49, 31–37.

    Article  Google Scholar 

  • Holt, J. A., & Lepage, M. (2000). Termites and soil properties. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 389–407). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Hongoh, Y., Ekpornprasit, L., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Noparatnaraporn, N., & Kudo, T. (2006). Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Molecular Ecology, 15, 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Howard, R., & Blomquist, G. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371–393.

    Article  CAS  PubMed  Google Scholar 

  • Hyodo, F., Inoue, T., Azuma, J. I., Tayasu, I., & Abe, T. (2000). Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biology and Biochemistry, 32, 653–658.

    Article  CAS  Google Scholar 

  • Hyodo, F., Tayasu, I., Inoue, T., Azuma, J. I., Kudo, T., & Abe, T. (2003). Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Functional Ecology, 17, 186–193.

    Article  Google Scholar 

  • Igwe, O., & Eze, P. (2015). Chemistry of trail pheromones from Cubitermes termites (Amitermes Dentatus): An innovation in Pest management. American Chemical Science Journal, 6, 16–24.

    Article  CAS  Google Scholar 

  • Inward, D. J. G., Vogler, A. P., & Eggleton, P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953–967.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, T. M., Haverty, M. I., Basten, C. J., Nelson, L. J., Page, M., & Forschler, B. T. (2000). Correlation of mitochondrial haplotypes with cuticular hydrocarbon phenotypes of sympatric Reticulitermes species from the south eastern United States. Journal of Chemical Ecology, 26, 1525–1542.

    Article  CAS  Google Scholar 

  • Johnson, R. A. (1981). Colony development and establishment of the fungus comb in Microtermes sp. nr. usambaricus (Sjostedt) (Isoptera: Macrotermitinae) from Nigeria. Insectes Sociaux, 28, 3–12.

    Article  Google Scholar 

  • Johnson, R. A., Thomas, R. J., Wood, T. G., & Swift, M. J. (1981). The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. Journal of Natural History, 15, 751–756.

    Article  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2011). Global biogeography of termites: A compilation of sources. In E. D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 477–498). Dordrecht: Springer.

    Google Scholar 

  • Jouquet, P., Barre, P., Lepage, M., & Velde, B. (2005). Impact of subterranean fungus-growing termites (Isoptera, Macrotermitiane) on chosen soil properties in a West African savanna. Biology and Fertility of Soils, 41, 365–370.

    Article  Google Scholar 

  • Kaib, M., Brandl, R., & Bagine, R. K. N. (1991). Cuticular hydrocarbon profiles: A valuable tool in termite taxonomy. Naturwissenschaften, 78, 176–179.

    Article  CAS  Google Scholar 

  • Kaib, M., Hacker, M., & Brandl, R. (2001). Egg-laying in monogynous and polygynous colonies of the termite Macrotermes michaelseni (Isoptera, Macrotermitidae). Insectes Sociaux, 48, 231–237.

    Article  Google Scholar 

  • Kaib, M., Franke, S., Francke, W., & Brandl, R. (2002). Cuticular hydrocarbons in a termite: Phenotypes and a neighbour–stranger effect. Physiological Entomology, 27, 189–198.

    Article  CAS  Google Scholar 

  • Kaib, M., Jmhasly, P., Wilfert, L., Durka, W., Franke, S., Francke, W., Leuthold, R. H., & Brandl, R. (2004). Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. Journal of Chemical Ecology, 30, 365–385.

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth, M., Roeser-Mueller, K., Koehler, S., Peterson, A., Nechitaylo, T. Y., Stubblefield, J. W., Herzner, G., Seger, J., & Strohm, E. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. PNAS, 111, 6359–6364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, H., Miura, T., Maekawa, K., Shinzato, N., & Matsumoto, T. (2002). Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Molecular Ecology, 11, 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  • Khumasinghe, N., & Ranasinghe, M. (1988). Incidence of termite damage in sugar cane grown in Sri Lanka. Beitr Trop Landwirt, 26, 303–307.

    Google Scholar 

  • Kim, K. H., Ramadhar, T. R., Beemelmanns, C., Cao, S., Poulsen, M., Currie, C. R., & Clardy, J. (2014). Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chemical Science, 5, 4333–4338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, H., Ocko, S., & Mahadevan, L. (2015). Termite mounds harness diurnal temperature oscillations for ventilation. PNAS, 112, 11589–11593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koné, N. A., Dosso, K., Konaté, S., Kouadio, J. Y., & Linsenmair, K. E. (2011). Environmental and biological determinants of Termitomyces species seasonal fructification in central and southern Cote d’Ivoire. Insectes Sociaux, 58, 371–382.

    Article  Google Scholar 

  • Korb, J. (2003). Thermoregulation and ventilation of termite mounds. Naturwissenschaften, 90, 212–219.

    Article  CAS  PubMed  Google Scholar 

  • Korb, J. (2011). Termite mound architecture, from function to construction. In E. D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 349–373). Dordrecht: Springer.

    Google Scholar 

  • Korb, J., & Aanen, D. K. (2003). The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behavioral Ecology and Sociobiology, 53, 65–71.

    Google Scholar 

  • Kranz, J., Schmutterer, H., & Koch, W. (1978). Diseases, pests and weeds in tropical crops (p. 329). London: Wiley.

    Google Scholar 

  • Kranz, J., Schmutterer, H., & Koch, W. (1981). Maladies, Ravageurs et Mauvaises Herbes des Cultures Tropicales, Termites, Fourmis blanches (pp. 304–306). Berlin et Hambourg: Verlag Paul Parey.

    Google Scholar 

  • Kutnik, M., Uva, P., Brinkworth, L., & BagneRes, A. G. (2004). Phylogeography of two European Reticulitermes (Isoptera) species: The Iberian refugium. Molecular Ecology, 13, 3099–3113.

    Article  CAS  PubMed  Google Scholar 

  • Legendre, F., Whiting, M. F., Bordereau, C., Cancello, E. M., Evans, T. A., & Grandcolas, P. (2008). The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution, 48, 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Leuthold, R. H., Badertscher, S., & Imboden, H. (1989). The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insectes Sociaux, 36, 328–338.

    Article  Google Scholar 

  • Leuthold, R. H., Triet, H., & Schildger, B. (2004). Husbandry and breeding of African Giant Termites (Macrotermes jeanneli ) at Berne Animal Park. Zool Garten N F, 74, 26–37.

    Google Scholar 

  • Li, H. J., ZG, X., & Deng, T. F. (2010). Species of termites attacking trees in China. Sociobiology, 56, 109–120.

    Google Scholar 

  • Li, H., Yang, M., Chen, Y., Zhu, N., Lee, C. Y., Wei, J. Q., & Mo, J. (2015). Investigation of age polyethism in food processing of the fungus-growing termite Odontotermes formosanus (Blattodea: Termitidae) using a laboratory artificial rearing system. Journal of Economic Entomology, 108, 266–273.

    Article  PubMed  Google Scholar 

  • Li, H., Dietrich, C., Zhu, N., Mikaelyan, A., Ma, B., Pi, R., Liu, Y., Yang, M., Brune, A., & Mo, J. (2016). Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environmental Microbiology, 18, 1440–1451.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Yan, X., Zhang, M., Xie, L., Wang, Q., Huang, Y., Zhou, X., Wang, S., & Zhou, Z. (2011). Microbiome of fungus-growing termites: A new reservoir for mining lignocellulase genes. Applied and Environmental Microbiology, 77, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Cornwell, W. K., Cao, K., Hu, Y., Logtestijn, R. S. P. V., Yang, S., Xie, X., Zhang, Y., Ye, D., Pan, X., Ye, X., Huang, Z., Dong, M., & Cornelissen, J. H. C. (2015). Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 103, 1214–1223.

    Article  Google Scholar 

  • Li-Ying, L., & Waterhouse, D. F. (1997). The distribution and importance of arthropod pests and weeds of agriculture and forestry plantations in southern China, Report 67 (p. 73). Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  • Lockey, K. H. (1988). Lipids of the insect cuticle: Origin, composition and function. Comparative Biochemistry and Physics B, 89, 595–645.

    Article  Google Scholar 

  • Logan, J. M. W. (1991). Damage to sorghum by termites (Isoptera: Macrotermitinae) in the lower Shire Valley, Malawi. Sociobiology, 19, 305–307.

    Google Scholar 

  • Logan, J. (1992). Termites (Isoptera): A pest or resource for small farmers in Africa? Tropical Science, 32, 71–79.

    Google Scholar 

  • Logan, J., & El Bakri, A. (1990). Termite damage to date palms (Phoenix dactylifera L) in northern Sudan with particular reference to the Dongola District. Tropical Science, 99, 1363–1368.

    Google Scholar 

  • Maienfisch, P., Angst, M., Brandl, F., Willi, F., Dieter, H., Hartmut, K., Werner, K., Alfred, R., Robert, S., Adrian, S., & Hansjurg, W. (2001). Chemistry and biology of thiamethoxam: A second generation neonicotinoid. Pest Management Science, 57, 906–913.

    Article  CAS  PubMed  Google Scholar 

  • Makonde, H. M., Boga, H. I., Osiemo, Z., Mwirichia, R., Stielow, J. B., Goker, M., & Klenk, H. P. (2013). Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods. PloS One, 8, e56464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marten, A., Kaib, M., & Brandl, R. (2009). Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). Journal of Chemical Ecology, 35, 572–579.

    Article  CAS  PubMed  Google Scholar 

  • Marten, A., Kaib, M., & Brandl, R. (2010). Are cuticular hydrocarbons involved in speciation of fungus-growing termites (Isoptera: Macrotermitinae)? In M. Glaubrecht (Ed.), Evolution in action: Case studies in adaptive radiation, speciation and the origin of biodiversity (pp. 283–306). Berlin\Heidelberg: Springer.

    Chapter  Google Scholar 

  • Mathew, G. M., YM, J., Lai, C. Y., Mathew, D. C., & Huang, C. C. (2012). Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: The implication of Bacillus as mutualists. FEMS Microbiology Ecology, 79, 504–517.

    Article  CAS  PubMed  Google Scholar 

  • Mensa-Bonsu, A. (1978). Differentiation des castes hez les termites superieurs (Isoptera: Termitidae): Determination précoce des larves neutres et sexuées, cycle saisonnier, sexués de remplacement. Thesis, Université de Dijon.

    Google Scholar 

  • Mikaelyan, A., Dietrich, C., Kohler, T., Poulsen, M., Sillam-Dussès, D., & Brune, A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 24, 5284–5295.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, M. R. (1989). Susceptibility to termite attack of various tree species planted in Zimbabwe. In D. J. Roland (Ed.), Trees for the tropics, Monograph 10 (pp. 215–226). Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  • Moncalvo, J. M., Lutzoni, F. M., Rehner, S. A., Johnson, J., & Vilgalys, R. (2000). Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Systematic Biology, 49, 278–305.

    Article  CAS  PubMed  Google Scholar 

  • Mora, P., Rouland, C., & Renoux, J. (1996). Foraging, nesting and damage caused by Microtermes subhyalinus (Isoptera: Termitidae) in a sugarcane plantation in the Central African Republic. Bulletin of Entomological Research, 86, 387–395.

    Article  Google Scholar 

  • Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005). The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics, 36, 563–595.

    Article  Google Scholar 

  • Mugerwa, S. (2015). Magnitude of the termite problem and its potential anthropogenic causes in Nakasongola district of Uganda. Jap Soc. Grassland Science, 61, 75–82.

    Article  Google Scholar 

  • Mulatu, W., & Emana, G. (2015). Assessment of the type and number of reproductives in M. subhyalinus colonies in Ghimbi district western Ethiopia. Advanced Research Journal of Microbiology, 2, 74–77.

    Google Scholar 

  • Myles, T. G. (1999). Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology, 33, 1–43.

    Google Scholar 

  • Neoh, K. B., & Lee, C. Y. (2009). Developmental stages and castes of two sympatric subterranean termites Macrotermes gilvus and Macrotermes carbonarius (Blattodea: Termitidae). Annals of the Entomological Society of America, 102, 1091–1098.

    Article  Google Scholar 

  • Nkunika, P. O. Y. (1989). Termites: A dilemma for the small scale farmer, Prod Farming (August) (pp. 7–10). Lusaka: Zambia National Farmers Union.

    Google Scholar 

  • Nkunika, P. O. Y. (1994). Control of termites in Zambia: Practical realities. International Journal of Tropical Insect Science, 15, 241–245.

    Article  Google Scholar 

  • Nobre, T., & Aanen, D. K. (2012). Fungiculture or termite husbandry? The ruminant hypothesis. Insects, 3, 307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobre, T., Eggleton, P., & Aanen, D. K. (2010). Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proceedings of the Royal Society of London B: Biological Sciences, 277, 359–365.

    Article  CAS  Google Scholar 

  • Nobre, T., Kon, E. N. A., Konat, E. S., Linsenmair, K. E., & Aanen, D. K. (2011a). Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Molecular Ecology, 20, 2619–2627.

    Article  CAS  PubMed  Google Scholar 

  • Nobre, T., Rouland-Lefevre, C., & Aanen, D. K. (2011b). Comparative biology of fungus cultivation in termites and ants. In E. D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 193–210). Dordrecht: Springer.

    Google Scholar 

  • Noirot, C. (1955). Recherches sur le polymorphisme des termites supérieurs (Termitidae). Annales des Sciences Naturelles – Zoologie et Biologie Animale, 17, 399–595.

    Google Scholar 

  • Noirot, C. (1969). Glands and secretions. In K. Krishna & F. Weesner (Eds.), Biology of termites (Vol. 1, pp. 89–123). New York\London: Academic Press.

    Chapter  Google Scholar 

  • Noirot, C. (1985). The caste system in higher termites. In J. Watson, B. Okot-Kotber, & C. Noirot (Eds.), Caste differentiation in social insects (pp. 75–86). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Noirot, C., & Darlington, J. P. E. C. (2000). Termite nests: Architecture, regulation and defence. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 121–139). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Okot-Kotber, B. M. (1981). Instars and polymorphism of castes in Macrotermes michaelseni (Isoptera, Macrotermitinae). Insectes Sociaux, 28, 233–246.

    Article  Google Scholar 

  • Osiemo, Z. B., Marten, A., Kaib, M., Gitonga, L. M., Boga, H. I., & Brandl, R. (2010). Open relationships in the castles of clay: High diversity and low host specificity of Termitomyces fungi associated with fungus-growing termites in Africa. Insectes Sociaux, 57, 351–363.

    Article  Google Scholar 

  • Otani, S., Mikaelyan, A., Nobre, T., Hansen, L. H., Koné, K. A., Sørensen, S. J., Aanen, D. K., Boomsma, J. J., Brune, A., & Poulsen, M. (2014). Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology, 23, 4631–4644.

    Article  CAS  PubMed  Google Scholar 

  • Otani, S., Hansen, L. H., Sorensen, S. J., & Poulsen, M. (2016). Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecology, 71, 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Page, M., Nelson, L. J., Forschler, B. T., & Haverty, M. I. (2002). Cuticular hydrocarbons suggest three lineages in Reticulitermes (Isoptera: Rhinotermitidae) from North America. Comparative Biochemistry and Physiology. B, 131, 305–324.

    Article  Google Scholar 

  • Parihar, D. R. (1981). Termites affecting Eucalyptus plantations and their control in the arid regions of India. Zeitschrift für Angewandte Entomologie, 92, 106–111.

    Article  Google Scholar 

  • Parihar, D. R. (1985). Crop termite damage in Indian desert and its control in castor. Zeitschrift fuer Angewandte Zoologie, 72, 309–315.

    Google Scholar 

  • Peppuy, A., Robert, A., Sémon, E., Bonnard, O., Truong Son, N., & Bordereau, C. (2001). Species specificity of trail pheromones of fungus-growing termites from northern Vietnam. Insectes Sociaux, 48, 245–250.

    Article  Google Scholar 

  • Poulsen, M. (2015). Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environmental Microbiology, 17, 2562–2572.

    Article  PubMed  Google Scholar 

  • Poulsen, M., & Boomsma, J. J. (2005). Mutualistic fungi control crop diversity in fungus-growing ants. Science, 307, 741–744.

    Article  CAS  PubMed  Google Scholar 

  • Poulsen, M., Hu, H., Li, C., Chen, Z., Xu, L., Otani, S., Nygaard, S., Nobre, T., Klaubauf, S., Schindler, P. M., Hauser, F., Pan, H., Yang, Z., Sonnenberg, A. S. M., de Beer, Z. W., Zhang, Y., Wingfield, M. J., Grimmelikhuijzen, C. J. P., de Vries, R. P., Korb, J., Aanen, D. K., Wang, J., Boomsmaa, J. J., & Zhang, G. (2014). Complementary symbiont contributions to plant decomposition in a fungus-farming termite. PNAS, 111, 14500–14505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qasim, M., Lin, Y., & Fang, D. (2015). Termites and microbial biological control strategies. South Asia Journal of Multidisciplinary Studies, 1, 1–27.

    Google Scholar 

  • Quennedey, A., Sillam-Dussès, D., Robert, A., & Bordereau, C. (2008). The fine structural organization of sternal glands of pseudergates and workers in termites (Isoptera): A comparative survey. Arthropod Structure and Development, 37, 168–185.

    Article  PubMed  Google Scholar 

  • Rajagopal, D. (1982). Relative incidence of termites on exotic species of Eucalyptus in India and their control. Zeitschrift für Angewandte Entomologie, 98, 225–230.

    Google Scholar 

  • Rao, M. R., Singh, M. P., & Day, R. (2000). Insect pest problems in tropical agroforestry systems: Contributory factors and strategies for management. Agroforestry Systems, 50, 243–277.

    Article  Google Scholar 

  • Reddy, M. V. (1983). First record of Odontotermes bellahunisensis Holmg and Holmg feeding on Cocos lucifera Linn. Journal of the Bombay Natural History Society, 80, 653–656.

    Google Scholar 

  • Reinhard, J., & Kaib, M. (2001). Trail communication during foraging and recruitment in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Journal of Insect Behavior, 14, 157–171.

    Article  Google Scholar 

  • Renoux, J., Rouland, C., Mora, P., & Dibangou, V. (1991). Les constructions du termite P. spiniger dans les champs de canne a sucre: Essai de lutte specifique. AFCAS R Int Can Suc, 1, 124–130.

    Google Scholar 

  • Roberts, E. M., Todd, C. N., Aanen, D. K., Nobre, T., Hilbert-Wolf, H. L., O’Connor, P. M., Tapanila, L., Mtelela, C., & Stevens, N. J. (2016). Oligocene termite nests with in situ fungus gardens from the Rukwa Rift Basin, Tanzania, support a Paleogene African origin for insect agriculture. PloS One, 11, e0156847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohrmann, G. F. (1978). The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae. Pedobiologia, 18, 89–98.

    CAS  Google Scholar 

  • Rouland, C., Ikhouane, A., & Nayalta, N. (1993). Etude biologique des populations d’Ancistrotermes guineensis présentes dans les plantations de la SONASUT. Act Coll IUSSI, 8, 79–87.

    Google Scholar 

  • Rouland, C., Ben Moussa, D., Reversat, G., & Laumond, C. (1996). Etude de la sensibilite de sexués de termites Macrotermitinae a une infestation par des nématodes entomopathogènes des genres Heterorhabditis et Steinernema. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie, 319, 997–1001.

    Google Scholar 

  • Rouland-Lefevre, C. (2000). Symbiosis with fungi. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 289–306). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rouland-Lefèvre, C., & Bignell, D. E. (2002). Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In J. Seckbach (Ed.), Symbiosis: Mechanisms and model systems (pp. 731–756). Dordrecht: Springer.

    Google Scholar 

  • Rouland-Lefèvre, C., & Mora, P. (2002). Control of Ancistrotermes guineensis Silvestri (Termitidae: Macrotermitinae), a pest of sugarcane in Chad. International Journal of Pest Management, 48, 81–86.

    Article  CAS  Google Scholar 

  • Rouland-Lefevre, C., Diouf, M. N., Brauman, A., & Neyra, M. (2002). Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Molecular Phylogenetics and Evolution, 22, 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Ruelle, J. (1985). Order Isoptera. In C. Scholtz & E. Holm (Eds.), Insects of southern Africa (p. 502). Durban: Butterworth.

    Google Scholar 

  • Rust, M., & Saran, R. (2006). Toxicity, repellency, and transfer of chlorfenapyr against western subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 99, 864–872.

    Article  CAS  PubMed  Google Scholar 

  • Sands, W. A. (1960). Termite control in west African afforestation. Report. 7th Commonwealth Entomological Conference, pp. 91–95.

    Google Scholar 

  • Sands, W. (1969). The association of termites and fungi. In K. Krishna & F. Weesner (Eds.), Biology of termites (Vol. 1, pp. 495–524). New York: Academic Press.

    Chapter  Google Scholar 

  • Sane, C. (2016). Relations entre le fonctionnement des agrosystèmes a base de manguiers et les dégats des termites (Termitidae: Isoptera) dans les regions de Thiès et de Dakar, au Sénégal. Thesis, Université Cheikh Anta Diop Dakar.

    Google Scholar 

  • Sane, C., Rouland-Lefevre, C., Grechi, I., Rey, J., Vayssieres, J., Diame, L., & Diarra, K. (2016). Diversity, damages and management of termites (Isoptera) in Senegalese agrosystems. International Journal of Biological and Chemical Sciences, 10, 134–154.

    Article  Google Scholar 

  • Schuurman, G. W. (2012). Ecosystem influences of fungus-growing termites in the dry paleotropics. In D. H. Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, H. Jones, K. Ritz, J. Six, D. R. Strong, & W. H. van der Putten (Eds.), Soil ecology and ecosystem services (pp. 173–185). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Sekamatte, B. M., & Okwakol, M. J. N. (2007). The present knowledge on soil pests and pathogens in Uganda. African Journal of Ecology, 45(Suppl. 2), 9–19.

    Article  Google Scholar 

  • Sekamatte, M., Latigo, M., & Smith, A. (2001). The effect of maize stover used as mulch on termite damage to maize and activity of predatory ants. African Crop Science Journal, 9, 411–419.

    Article  Google Scholar 

  • Sekamatte, B. M., Ogenga-Latigo, M., & Russell-Smith, A. (2003). Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Protection, 22, 87–93.

    Article  Google Scholar 

  • Sharma K, Kalpana KK, Sharma V, Gupta P, Jaya M, Kumar A, Singh B (2008) Persistence and vertical distribution of termiticide fipronil in modified ground board test. Environmental Monitoring and Assessment 137:179–184.

    Google Scholar 

  • Sharma, R. K., Srinivasa Babu, K., Chhokar, R. S., & Sharma, A. K. (2004). Effect of tillage on termites, weed incidence and productivity of spring wheat in rice–wheat system of north western Indian plains. Crop Protection, 23, 1049–1054.

    Article  Google Scholar 

  • Shinzato, N., Muramatsu, M., Watanabe, Y., & Matsui, T. (2005). Termite-regulated fungal monoculture in fungus combs of a Macrotermitine termite Odontotermes formosanus. Zoological Science, 22, 917–922.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, R. (1983). Establishment of fungus comb in laboratory colonies of Macrotermes michaelseni and Odontotermes montanus (Isoptera, Macrotermitinae). Insectes Sociaux, 30, 204–209.

    Article  Google Scholar 

  • Sileshi, G., Mafongoya, P. L., Kwesiga, F., & Nkunika, P. (2005). Termite damage to maize grown in agroforestry systems, traditional fallows and monoculture on nitrogen-limited soils in eastern Zambia. Agricultural and Forest Entomology, 7, 61–69.

    Article  Google Scholar 

  • Sileshi, G. W., Kuntashula, E., Matakala, P., & Nkunika, P. O. (2008). Farmers’ perceptions of tree mortality, pests and pest management practices in agroforestry in Malawi, Mozambique and Zambia. Agroforestry Systems, 72, 87–101.

    Article  Google Scholar 

  • Sillam-Dussès, D., Semon, E., Robert, A., Cancello, E., Lenz, M., ValterovA, I., & Bordereau, C. (2010). Identification of multi-component trail pheromones in the most evolutionarily derived termites, the Nasutitermitinae (Termitidae). Biological Journal of the Linnean Society, 99, 20–27.

    Article  Google Scholar 

  • Singh, B., Kular, J. S., Ram, H., & Mahal, M. S. (2014). Relative abundance and damage of some insect pests of wheat under different tillage practices in rice–wheat cropping in India. Crop Protection, 61, 16–22.

    Article  Google Scholar 

  • Starnes, R. L., Liu, C. L., & Marrone, P. G. (1993). History, use, and future of microbial insecticides. American Entomologist, 39, 83–91.

    Article  Google Scholar 

  • Sun, J., Fuxa, J., & Henderson, G. (2003). Virulence and in vitro characteristics of pathogenic fungi isolated from soil by baiting with Coptotermes formosanus (isopteran: Rhinotermitidae). Journal of Entomological Science, 38, 342–358.

    Article  Google Scholar 

  • Takahashi, S., & Gassa, A. (1995). Roles of cuticular hydrocarbons in intra-and interspecific recognition behavior of two rhinotermitidae species. Journal of Chemical Ecology, 21, 1837–1845.

    Article  CAS  PubMed  Google Scholar 

  • Takematsu, Y., & Yamaoka, R. (1999). Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) in Japan and neighboring countries as chemo taxonomic characters. Applied Entomology and Zoology, 34, 179–188.

    Article  CAS  Google Scholar 

  • Tang, B., Tang, M., Chen, C., Qiu, P., Liu, Q., Wang, M., & Li, C. (2006). Characteristics of soil fauna community in the Dongjiao coconut plantation ecosystem in Hainan, China. Acta Ecologica Sinica, 26, 26–32.

    Article  Google Scholar 

  • Tiben, A., Pearce, M., & Wood, T. (1990). Damage to crops by Microtermes najdensis (Isoptera: Macrotermitinae) in irrigated semi-desert areas of the red sea coast. 2. Cotton in the Tokar Delta region of Sudan. Trop Pest Manage, 36, 296–304.

    Article  Google Scholar 

  • Traniello, J. F. A., & Leuthold, R. H. (2000). Behavior and ecology of foraging in termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 141–168). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Turner, J. (1994). Ventilation and thermal constancy of a colony of a southern African termite (Odontotermes transvaalensis, Macrotermitinae). Journal of Arid Environments, 28, 231–248.

    Article  Google Scholar 

  • Turner, J. S. (2001). On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiological and Biochemical Zoology, 74, 798–822.

    Article  CAS  PubMed  Google Scholar 

  • Um, S., Fraimout, A., Sapountzis, P., DC, O., & Poulsen, M. (2013). The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Scientific Reports, 3, 3250.

    Article  PubMed  PubMed Central  Google Scholar 

  • UNEP-FAO. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite. Global IPM facility expert group on termite biology and management (eds UNEP), pp. 47.

    Google Scholar 

  • Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63, 959–972.

    Article  CAS  Google Scholar 

  • Wardell, D. (1987). Control of termites in nurseries and young plantations in Africa: Established practices and alternative courses of action. Commonwealth Forestry Review, 66, 77–89.

    Google Scholar 

  • Wood, T. (1996). The agricultural importance of termites in the tropics. Agric Zool Rev, 7, 117–155.

    Google Scholar 

  • Wood, T., & Cowie, R. (1988). Assessment of on-farm losses in cereals in Africa due to soil insects. International Journal of Tropical Insect Science, 9, 709–716.

    Article  Google Scholar 

  • Wood, T., & Pearce, M. (1991). Termites in Africa: The environmental impact of control measures and damage to crops, trees, rangeland and rural buildings. Sociobiology, 19, 221–234.

    Google Scholar 

  • Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wood, T., & Thomas, R. (1989). The mutualistic association between Macrotermitinae and Termitomyces. In N. Wilding, N. Collins, P. Hammond, & J. Webber (Eds.), Insect-fungus interactions (pp. 69–92). London: Academic Press.

    Chapter  Google Scholar 

  • Wood, T. G., Bednarzik, M., & Aden, H. (1987). Damage to crops by Microtermes najdensis (Isoptera, Macrotermitinae) in irrigated semi-desert areas of the red sea coast 1. The Tihama region of the Yemen Arab Republic. Tropical Pest Management, 33, 142–150.

    Article  Google Scholar 

  • Xie, Y., Wang, K., Huang, Q., & Lei, C. (2014). Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Industrial Crops and Products, 53, 163–166.

    Article  CAS  Google Scholar 

  • Ye, G., Li, K., Zhu, J., Zhu, G., & Hu, C. (2007). Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six Necrophagous flies. Journal of Medical Entomology, 44, 450–456.

    Article  CAS  PubMed  Google Scholar 

  • Zaremski, A., Fouquet, D., & Louppe, D. (2009). Les termites dans le monde. Editions Quae, pp. 94.

    Google Scholar 

  • Zhang, M., Liu, N., Qian, C., Wang, Q., Wang, Q., Long, Y., Huang, Y., Zhou, Z., & Yan, X. (2014). Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-Glucosidase genes. Microbial Ecology, 68, 416–425.

    Article  PubMed  Google Scholar 

  • Zhong, J., & Liu, L. (2002). Termite fauna in China and their economic importance. Sociobiology, 40, 25–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diouf, M., Rouland-Lefevre, C. (2018). The Fungus-Growing Termites: Biology, Damage on Tropical Crops and Specific Management. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-68726-1_1

Download citation

Publish with us

Policies and ethics