Skip to main content

Effect of Climate Change on Algae Valuable Source of Medicinal Natural Compounds

  • Chapter
Medicinal Plants and Environmental Challenges

Abstract

The word algae represent a large group of different organisms from different phylogenetic groups, representing many taxonomic divisions. They are distributed worldwide in the sea, in freshwater and in moist situations on land. Algae grow rapidly, produce useful products, and provide environmental benefits. Algae have potential as foods, and vitamins, bioactive substances, polysaccharides and other valuable commercial products and also are useful as raw material for future biofuel production and liquid fertilizer. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms) etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. Changes in global temperature and ocean chemistry associated with increasing greenhouse gas concentrations are forcing widespread shifts in biological systems. In response to warming, species ranges are shifting toward the poles, up mountainsides, and to deeper ocean depths. Concern for the environment and global climate change has increased in recent years, and algae can provide a number of significant environmental benefits. They remove carbon dioxide from the atmosphere, helping to reduce the harmful effects of the gas on climate change and the health of the environment. The aim of this chapter is to provide an overview of the current knowledge on these photosynthetic organisms regarding their environmental and pharmaceutical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian R, Reilly CMO, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Andrade PA, Barbosa M, Matos RP, Lopes G, Vinholes J (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    Article  CAS  Google Scholar 

  • Beaugrand G, Edwards M, Legandre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107(22):10120–10124

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Malley RTO, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski P, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  Google Scholar 

  • Bissenger JE, Montagnes SJ, Atkinson D (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53:487–493

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25(3):743–756

    Article  CAS  Google Scholar 

  • Buschmann AH, VaAquez J, Osorio P, Reyes E, Filun L, Hernandez-Gonzalez MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46(5):1394–1407

    Article  CAS  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233

    Article  Google Scholar 

  • Chu SH, Zhang QS, Liu SK, Tang YZ, Zhang SB, Lu ZC, Yu YQ (2012) Tolerance of Sargassum thunbergii germlings to thermal, osmotic and desiccation stress. Aq Bot 96:1–6

    Article  Google Scholar 

  • De Boer MK (2005) Temperature responses of three Fibrocapsa japonica strains (Raphidophyceae) from different climate regions. J Plankton Res 27(1):47–60

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JM, Barry JP, Chan F, English CA et al (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer-Verlag, Berlin, Germany, pp 47–66

    Chapter  Google Scholar 

  • Fan X, Bai L, Zhu L, Yang L, Zhang X (2014) Marine Algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62:9211–9222

    Article  CAS  Google Scholar 

  • Guinder VA, Molinero JC (2013) Climate change effects on marine phytoplankton. In: Menendez MC (ed) Marine ecology in a changing world. CRC Press

    Chapter  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48(5):1064–1068

    Article  CAS  Google Scholar 

  • Hudek K, Davis LC, Ibbini J, Erickson L (2014) Commercial products from algae. In: Bajpai R et al. (eds) Algal Biorefineries Part II, pp 275–295

    Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3(5):1356–1373

    Article  Google Scholar 

  • Keeling RF, Ortzinger KA, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229

    Article  Google Scholar 

  • Kim E, Park HS, Jung Y, Choi DW, Jeong WJ, Hwang MS, Park EJ, Gong YG (2011) Identification of the high-temperature response genes from Porphyraseriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene. J Phycol 47:821–828

    Article  CAS  Google Scholar 

  • Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174(6):755–768

    PubMed  Google Scholar 

  • Kiuru P, Auria MD, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1234–1246

    Article  CAS  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2012) Climate change and ocean acidification effects on sea grasses and marine macroalgae. Glob Chang Biol 19(1):103–132

    Article  Google Scholar 

  • Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–26

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  • Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, Bernardo J et al (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 7(2):e31145

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman VJ (2009a) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1): 27–37

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman VJ (2009b) Climate change: Links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363

    Article  CAS  Google Scholar 

  • Paerl HW, Hall NS, Calandrino E (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409(10):1739–1745

    Article  CAS  Google Scholar 

  • Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222

    Article  Google Scholar 

  • Rinke K, Yeates P, Rothhaupt K (2010) A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwat Biol 55:1674–1693

    Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Chang Biol 17:154–162

    Article  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2:686–690

    Article  Google Scholar 

  • Wells ML, Vera LT, Smayda TJ, Karlson BSO, Trick CG, Raphael MK (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  Google Scholar 

  • Williams SL, Dethier MN (2005) High and dry: variation in net photosynthesis of the intertidal seaweed Fucusgardneri. Ecology 86:2373–2379

    Article  Google Scholar 

  • Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16

    Article  Google Scholar 

  • Zacharioudaki A, Pan SQ, Simmonds D, Magar V, Reeve DE (2011) Future wave climate over the West-European shelf seas. Ocean Dynam 61:807–827

    Article  Google Scholar 

  • Zubia M, Fabre MS, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Yousefzadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yousefzadi, M., Mirjalili, M.H. (2017). Effect of Climate Change on Algae Valuable Source of Medicinal Natural Compounds. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_7

Download citation

Publish with us

Policies and ethics