Skip to main content

Effects of Toxic Gases, Ozone, Carbon Dioxide, and Wastes on Plant Secondary Metabolism

  • Chapter
Medicinal Plants and Environmental Challenges

Abstract

Various kinds of human activities along with environmental interactions or changes are occasioning the addition and accumulation of hazardous entities in the environment. The subsequent result of this is negative effects of these factors on living systems including plants. Factors such as heavy metals, toxic gases, ozone, and carbon dioxide have a major impact on plant growth and secondary metabolism of the plants. Secondary metabolites are the key players in plant adaptation to these environmental stresses and play a role in mitigating the negative effects of these stresses. Both primary and secondary metabolisms are altered under these stress environments, however, plants have evolved to endure these conditions through inducing several regulating mechanisms such as evapotranspiration of available water, controlled openings and closings of stomata as per the availability of water, over accumulation of various osmoprotectants and osmoregulators, induction of antioxidant machinery and fine tuning of transcriptional and post-transcriptional regulations of gene expressions. In most of the plants, the ultimate result of these defensive adaptations is regulated production of the secondary metabolites. In this chapter, we have discussed the effects of toxic gases, ozone, carbon dioxide as well as other wastes including the nanoparticles-wastes on plant secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PSM:

Plant Secondary Metabolites

CO2:

Carbon Dioxide

O3:

Ozone

SO2:

Sulfur Dioxide

H2S:

Hydrogen Sulfide

Cd:

Cadmium

Cr:

Chromium

Ni:

Nickel

As:

Arsenic

Ag:

Silver

Au:

Gold

NAA:

Naphthalene acetic acid

NSC:

Non-structural Carbohydrates

References

  • Aghajanzadeh T, Kopriva S, Hawkesford MJ, Koprivova A, De Kok LJ (2015) Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition. Front Plant Sci 6:924. doi:10.3389/fpls.2015.00924

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Hahn E, Paek K (2005) CO2-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes. Plant Physiol Biochem 43:449–457

    Article  CAS  PubMed  Google Scholar 

  • Bortolin R, Caregnato F et al (2016) Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicol Environ Saf 129:16–24

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Jiang Y, Chen J, Zhang H, Huang W, Li L, Zhang W (2009) Arsenic accumulation in Scutellaria baicalensis Georgi and its effects on plant growth and pharmaceutical components. J Hazard Mater 171:508–513. doi:10.1016/j.jhazmat.2009.06.022

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Seo E, Gyllenhaal C et al (2003) Panax ginseng: a role in cancer therapy? Integr Cancer Ther 2:13–33

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen Q, Zhang X, Li R, Jia Y, Ef AA, Jia A, Hu L, Hu X (2016) Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiol Biochem 104:174–179. doi:10.1016/j.plaphy.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  • Chung CY, Chung PL, Liao SW (2011) Carbon fixation efficiency of plants influenced by sulfur dioxide. Environ Monit Assess 173:701–707

    Article  CAS  PubMed  Google Scholar 

  • Ezuruike U, Prieto JM (2014) The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol 155:857–924

    Article  CAS  PubMed  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581. doi:10.1055/s-2007-965431

    Article  CAS  PubMed  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in Callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180:1076–1092. doi:10.1007/s12010-016-2153-1

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sanchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genom 16:341. doi:10.1186/s12864-015-1530-4

    Article  CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZ (2011) Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Int J Mol Sci 12:1101–1114

    Google Scholar 

  • Ghasemzadeh A, Jaafar H, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15(7907):7922

    Google Scholar 

  • Giraud E, Ivanova A, Gordon CS, Whelan J, Considine MJ (2012) Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signaling and biotic defense responses. Plant, Cell Environ 35:405–417. doi:10.1111/j.1365-3040.2011.02379.x

    Article  CAS  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23(1):19–54

    Article  CAS  Google Scholar 

  • Haworth M, Elliott-Kingston C, Gallagher A, Fitzgerald A, McElwain JC (2012) Sulphur dioxide fumigation effects on stomatal density and index of non-resistant plants: implications for the stomatal palaeo-[CO2] proxy method. Rev Palaeobot Palynol 182:44–54

    Google Scholar 

  • He XY, Huang W, Chen W, Dong T, Liu CB, Chen ZJ, Xu S, Ruan YN (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci 21:199–203

    Article  CAS  Google Scholar 

  • Heyworth C, Iason G, Temperton V (1998) The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oncologia 115:344–350

    CAS  Google Scholar 

  • Huang W, He X, Liu C et al (2010) Effects of elevated carbon dioxide and ozone on foliar flavonoids of Ginkgo biloba. Adv Mat Res 113:165–169

    Google Scholar 

  • Ibrahim M, Jaafar H (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (Oil Palm) seedlings. Molecules 17:5195–5211. doi:10.3390/molecules17055195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim M, Jaafar H, Karimi E et al (2014) Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity. Sci World J. doi:10.1155/2014/360290

    Article  Google Scholar 

  • Idso S, Kimball B, Pettit G et al (2000) Effects of atmospheric CO2 enrichment on the growth and development of Hymenocallis littoralis (amaryllidaceae) and the concentrations of several antineoplastic and antiviral constituents of its bulbs. Am J Bot 87(6):769–773

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Summary for policymakers: synthesis report. Available from https://www.ipcc.ch/report/ar5/syr/

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447. doi:10.1016/j.jsps.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  • Jordan D, Green T, Chappelka A (1991) Response of total tannins and phenolics on Loblolly pine foliage exposed to ozone and acid rain. J Chem Ecol 17:505–513

    Article  CAS  PubMed  Google Scholar 

  • Khare T, Kumar V, Kavi Kishor PB (2015) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252:1149–1165. doi:10.1007/s00709-014-0749-2

    Article  CAS  PubMed  Google Scholar 

  • Kováčik J, Grúz J, Bačkor M, Tomko J, Strnad M, Repčák M (2008) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62:145–152. doi:10.1016/j.envexpbot.2007.07.012

    Article  CAS  Google Scholar 

  • Kumar V, Khare T (2015) Individual and additive effects of Na+ and Cl ions on rice under salinity stress. Arch Agron Soil Sci 61:381–395. doi:10.1080/03650340.2014.936400

    Article  CAS  Google Scholar 

  • Kumar V, Khare T (2016) Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl) and additive stress effects of NaCl. Acta Physiol Plant 38(7):170. doi:10.1007/s11738-016-2191-x

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Kavi Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over expressing P5CSF129A gene. Plant Biotechnol Rep 4(1):37–48. doi:10.1007/S11816-009-0118-3

    Article  Google Scholar 

  • Lavola A, Julkunen-Tiitto R, Pakkonen E (1994) Does ozone stress change the primary or secondary metabolites of Birch (Betula pendul Roth.)? New Phytol 126:637–642

    Article  CAS  Google Scholar 

  • Mahn A, Reyes A (2012) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18:503–514

    Article  PubMed  Google Scholar 

  • Mapara N, Sharma M, Shriram V, Bharadwaj R, Mohite KC, Kumar V (2015) Antimicrobial potentials of Helicteres isora silver nanoparticles against extensively drug resistant (XDR) clinical isolates of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99:10655–10667. doi:10.1007/s00253-015-6938-x

    Article  CAS  PubMed  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832. doi:10.3389/fpls.2017.00832

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra T (2016) Climate change and production of secondary metabolites in medicinal plants: a review. Int J Herb Med 4:27–30

    Google Scholar 

  • Montesinos-Pereira D, Barrameda-Medina Y, Baenas N, Moreno DA, Sanchez-Rodriguez E, Blasco B, Ruiz JM (2016) Evaluation of hydrogen sulfide supply to biostimulate the nutritive and phytochemical quality and the antioxidant capacity of Cabbage (Brassica oleracea L.‘Bronco’). J Appl Bot Food Qual 89. doi:10.5073/JABFQ.2016.089.038

  • Mosaleeyanon K, Zobayed SMA, Afreen F, Kozai T (2005) Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s wort. Plant Sci 169:523–531

    Google Scholar 

  • Murch SJ, Saxena PK (2002) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560

    Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy Metals alter the potency of medicinal plants, In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, reviews of environmental contamination and toxicology 203, doi:10.1007/978-1-4419-1352-4_5

  • Pellegrini E, Carucci G, Campanella A et al (2011) Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environ Exp Bot 73:94–101

    Article  CAS  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G et al (2015) Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. Environ Sci Pollu Res 22:13083–13093

    Article  CAS  Google Scholar 

  • Rahimtoola S (2004) Digitalis therapy for patients in clinical heart failure. Circulation 109:2942–2946. doi:10.1161/01.CIR.0000132477.32438.03

    Article  PubMed  Google Scholar 

  • Rai V, Khatoon S, Bisht SS, Mehrotra S (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61:1644–1650. doi:10.1016/j.chemosphere.2005.04.052

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Mehrotra S (2008) Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthus amarus Schum & Thonn.—an hepatoprotective plant. Environ Monit Assess 147:307–315. doi:10.1007/s10661-007-0122-4

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Vaypayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169. doi:10.1016/j.plantsci.2004.06.016

    Article  CAS  Google Scholar 

  • Saleem A, Loponen J, Pihlaja K, Oksanen E (2001) Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol 27:1049–1062

    Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan S, Karthi S (2014) effect of elevated CO2 on growth and biochemical changes in Catharanthus roseus—an valuable medicinal herb. World J Pharm Pharmaceuti Sci 3:411–422

    Google Scholar 

  • Schonhof I, Klaring H, Krumbein A et al (2007) Interaction between atmospheric CO2 and Glucosinolates in Broccoli. J Chem Ecol 33:105–114. Doi:10.1007/s10886-006-9202-0

    Article  CAS  Google Scholar 

  • Shakeri A, Sahebkar A, Javadi B (2016) Melissa officinalis L.—a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. doi:10.1016/j.jep.2016.05.010

  • Shriram V, Kumar V, Devarumath RM, Khare T, Wani SH (2016) MicroRNAs as potent targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. doi:10.3389/fpls.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva LC, Araujo TO, Martinez CA, Lobo F, Azevedo AA, Oliva MA (2015) Differential responses of C3 and CAM native Brazilian plant species to a SO2− and SPMFe− contaminated Restinga. Environ Sci Pollut Res Int 22:140007–140017. doi:10.1007/s11356-015-4391-0

    Article  CAS  Google Scholar 

  • Singh A, Agrawal M (2015) Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels. Environ Sci Pollut Res 22:3936–3946

    Article  CAS  Google Scholar 

  • Snow M, Bard R, Olszyk D et al (2003) Monoterpenes levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol Plant 117:352–358

    Article  CAS  PubMed  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? a field experiment and meta-analysis of CO2− mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842. doi:10.1111/j.1365-2486.2007.01392.x

    Article  Google Scholar 

  • Stuhlfauth T, Fock H (1990) Effect of whole season CO2 enrichment on the cultivation of a medicinal plant, Digitalis lanata. J Agro Crop Sci 164: 168–173

    Article  CAS  Google Scholar 

  • Stuhlfauth T, Klug K, Fock H (1987) The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26(10):2735–2739

    Article  CAS  Google Scholar 

  • Sun L, Su H, Zhu Y et al (2012) Involvement of abscisic acid in ozone-induced puerarin production of Pueraria thomsnii Benth. suspension cell cultures. Plant Cell Rep 31:179–185

    Article  CAS  PubMed  Google Scholar 

  • Swanepoel JW, Kruger GHJ, Van Heerden PDR (2007) Effects of sulphur dioxide on photosynthesis in the succulent Augea capensis Thunb. J Arid Environ 70:208–221

    Article  Google Scholar 

  • Tonelli M, Pellegrini E, D’ Angiolillo F, Petersen M, Nali C, Pistelli L, Lorenzini G (2015) Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell, Tissue Organ Cult 120:617–629

    Article  Google Scholar 

  • Wang W, Zhao Y, Rayburn E et al (2007) In vitro anti-cancer activity and structure–activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 59:589–601. doi:10.1007/s00280-006-0300-z

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Hossain MA (eds) (2015) Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, USA

    Google Scholar 

  • Wani SH, Sofi PA, Gosal SS, Singh NB (2010) In vitro screening of rice (Oryza sativa L) callus for drought tolerance. Commun Biometry Crop Sci 5(2):108–115

    Google Scholar 

  • Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol Plant 55(3):536–540

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance—role of Glycine Betaine. Curr Genomics 14(3):157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Gosal SS (2010) Genetic engineering for osmotic stress tolerance in plants–role of Proline. IUP J Genet Evol 3(4):14–25

    Google Scholar 

  • Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent Phytohormone. Transcriptomics 3(2):1000113. doi:10.4172/2329-8936.1000113

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016a) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176. doi:10.1016/j.cj.2016.01.010

  • Wani SH, Sah SK, Khare T, Shriram V, Kumar V (2016b) Engineering Phytohormones for abiotic stress tolerance in crop plants. In: Ahammed GJ, Yu J (eds) Plant hormones under challenging environmental factors. Springer Science+Business Media, Dordrecht. doi:10.1007/978-94-0177758-2_10

  • Wani SH, Dutta T, Neelapu NRR, Surekha C (2017) Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene. doi:10.1016/j.plgene.2017.05.006

    Article  CAS  Google Scholar 

  • Weinmann S, Roll S, Schwarzbach C et al (2010) Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatrics 10:14. doi:10.1186/1471-2318-10-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Yang B, Dong J et al (2011) Enhancing hypericin production of Hypericum perforatum cell suspension culture by ozone exposure. Biotechnol Prog 27(4):1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag–SiO2 core-shell nanoparticles. Curr Nanosci 9:363–370. doi:10.2174/157341371130903001

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Yang G, Sun H, Tang J, Yang J, Wang Y, Garran TA, Guo L (2016) Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L. Front Med. doi:10.1007/s11684-016-0486-3

    Article  PubMed  Google Scholar 

  • Ziska L, Panicker S, Wojno H (2008) Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Clim Change 91:395–403. doi:10.1007/s10584-008-9418-9

    Article  CAS  Google Scholar 

  • Zobayed S, Saxena P (2004) Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. In Vitro Cell Dev Biol Plant 40:108–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research support through the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India funds (grant number SR/FT/LS-93/2011 and EMR/2016/003896) to VK’s lab is gratefully acknowledged. SHW is grateful to University Grants Commission, New Delhi India for providing Raman Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinay Kumar or Shabir H. Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, V., Khare, T., Arya, S., Shriram, V., Wani, S.H. (2017). Effects of Toxic Gases, Ozone, Carbon Dioxide, and Wastes on Plant Secondary Metabolism. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_5

Download citation

Publish with us

Policies and ethics