Plant Derived Essential Oils Against Aedes aegypti L. and Their Biotechnological Production

  • Clarice Noleto Dias
  • Ludmilla Santos Silva de Mesquita
  • Denise Fernandes Coutinho
  • Sonia Malik


Aedes aegyti L. is the main vector of important viruses like Dengue, Yellow, Zika and Chikungunya fevers. In many countries, these diseases are considered as great public health problems due to the serious consequences they can cause such as Guillain-Barré syndrome, neurological disorders and internal hemorrhagic problems, which may lead to death. The transmission of these diseases occurs through the bite of infected female of A. aegypti. According to World Health Organization, the major way to avoid the spread of these diseases is to control the vector by using larvicides and insecticides products. Many efforts have been done to find natural products that can be used to eliminate different phases of the life cycle of this mosquito. Among these, essential oils are recognized as important plant-derived products to control A. aegypti. Essential oils are complex mixture of mono, sesquiterpenes and phenylpropanoids and normally have a nice odor. Several studies have shown the larvicidal and insecticides properties of essential oils in plants belonging to different families. The literature studies indicated that in most of the cases monoterpenes like geraniol and citronellol, and phenylpropanoids; eugenol were the main components of essential oils that can control A. aegypti spread. In vitro studies suggested that composition and production of essential oils could be manipulated by the use of different concentrations and combinations of growth regulators and elicitors.


Medicinal plants Mosquitoes-borne diseases Plant derived natural compounds Larvicides Insecticides 



Authors would like to acknowledge Fundação de Amparo à Pesquisa e Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA), Sao Luis, Maranhao.


  1. Akhtar Y, Pages E, Stevens A, Bradbury R, da Camara CAG, Isman MB (2012) Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper. Physiol Entomol 37(1):81–91. doi: 10.1111/j.1365-3032.2011.00824.xCrossRefGoogle Scholar
  2. Barnard DR (1999) Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol 36(5):625–629. doi: 10.1093/jmedent/36.5.625CrossRefPubMedGoogle Scholar
  3. Baser KHC, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. Baskar K, Sudha V, Nattudurai G, Ignacimuthu S, Duraipandiyan V, Jayakumar M et al (2017) Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Physiol Mol Plant Pathol. doi: 10.1016/j.pmpp.2017.03.002CrossRefGoogle Scholar
  5. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805CrossRefGoogle Scholar
  6. Bohbot JD, Dickens JC (2010) Insect repellents: modulators of mosquito odorant receptor activity. PLoS ONE 5(8):e12138CrossRefGoogle Scholar
  7. Boix YF, Victório CP, Lage CLS, Kuster RM. (2010) Volatile compounds from Rosmarinus officinalis L. and Baccharis dracunculifolia DC. growing in southeast coast of Brazil. Quimica Nova, 33(2), 255–257CrossRefGoogle Scholar
  8. Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR et al (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol 36(2):258–268. doi: 10.1111/j.1948-7134.2011.00166.xCrossRefPubMedGoogle Scholar
  9. Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B et al (2007) Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 78(5):359–364. doi: 10.1016/j.fitote.2007.02.006CrossRefPubMedGoogle Scholar
  10. Clem JR, Havemann DF, Raebel MA (1993) Insect repellent (N, N-diethyl-m-toluamide) cardiovascular toxicity in an adult. Ann Pharmacother 27(3):289–293CrossRefGoogle Scholar
  11. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335CrossRefGoogle Scholar
  12. Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J, Girard E, Lapied B (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol 7(1):47CrossRefGoogle Scholar
  13. Darbro JM, Muzari MO, Giblin A, Adamczyk RMA, Ritchie AS, Devine GJ (2017) Reducing biting rates of Aedes aegypti with metofluthrin: investigations in time and space. Parasites Vectors 10:69. doi: 10.1186/s13071-017-2004-0CrossRefPubMedPubMedCentralGoogle Scholar
  14. Demirci B, Tsikolia M, Bernier UR, Agramonte NM, Alqasoumi SI, Al-Yahya MA et al (2013) Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito. Acta Trop 128(3):557–560. doi: 10.1016/j.actatropica.2013.08.003CrossRefPubMedGoogle Scholar
  15. Dias CN, Moraes DFC (2014) Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res 113:565–592. doi: 10.1007/s00436-013-3687-6CrossRefPubMedGoogle Scholar
  16. Dickens JC, Bohbot JD (2013) Mini review: mode of action of mosquito repellents. Pestic Biochem Physiol 106(3):149–155CrossRefGoogle Scholar
  17. Edwin ES, Vasantha-Srinivasan P, Senthil-Nathan S et al (2016) A. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178CrossRefGoogle Scholar
  18. El-Bakry AA, Abdel-Salam AM (2012) Regeneration from embryogenic callus and suspension cultures of the wild medicinal plant Cymbopogon schoenanthus. Afr J Biotech 11(43):10098–10107Google Scholar
  19. El-Wakeil NE (2013) Botanical pesticides and their mode of action. Gesunde Pflanzen 65(4):125–149CrossRefGoogle Scholar
  20. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130(3):325–337Google Scholar
  21. Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Biores Technol 99(7):2507–2515. doi: 10.1016/j.biortech.2007.04.066CrossRefGoogle Scholar
  22. Govindaraj S, Kumari BD, Cioni PL, Flamini G (2008) Mass propagation and essential oil analysis of Artemisia vulgaris. J Biosci Bioeng 105(3):176–183CrossRefGoogle Scholar
  23. Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302CrossRefGoogle Scholar
  24. Jantan I, Mohd Z (1999) Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. ASIAN Review of Biodiversity and Environmental Conservation, Nov-Dec, pp 1–7Google Scholar
  25. Kerdudo A, Gonnot V, Ellong EN, Boyer L, Chandre F, Adenet S et al (2016) Composition and bioactivity of Pluchea carolinensis (Jack.) G. essential oil from Martinique. Ind Crops Prod 89:295–302. doi: 10.1016/j.indcrop.2016.04.076CrossRefGoogle Scholar
  26. Khanikor B, Parida P, Yadav RNS, Bora D (2013) Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of homology modeling and docking studies. J Appl Pharm Sci 3(2):6Google Scholar
  27. Kiplang’at K, Mwangi RW (2014) Synergistic repellent activity of plant essential oils against Aedes aegypti on rabbit Skin. Intern J Mosq Res 1(4):55–59Google Scholar
  28. Klowden MJ (2007) Making generalizations about vectors: is there a physiology of “the mosquito”? Entomol Res 37119110:1–13. doi: 10.1111/j.1748-5967.2007.00044.xCrossRefGoogle Scholar
  29. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58(11):1101–1106CrossRefGoogle Scholar
  30. Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pacific J Trop Biomed 1(2):85–88. doi: 10.1016/S2221-1691(11)60001-4CrossRefGoogle Scholar
  31. Kwon HW, Kim SI, Chang KS, Clark JM, Ahn YJ (2011) Enhanced repellency of binary mixtures of Zanthoxylum armatum seed oil, vanillin, and their aerosols to mosquitoes under laboratory and field conditions. J Med Entomol 48(1):61–66CrossRefGoogle Scholar
  32. Leal WS, Uchida K (1998) Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citratus. J Asia-Pacific Entomol 1(2):217–221CrossRefGoogle Scholar
  33. Lupi E, Hatz C, Schlagenhauf P (2013) The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp.—a literature review. Travel Med Infect Dis 11(6):374–411. doi: 10.1016/j.tmaid.2013.10.005CrossRefPubMedGoogle Scholar
  34. Maday E, Szoke E, Zs Muskath, Lemberkovics E (1999) A study of the production of essential oils in chamomile hairy root cultures. Eur J Drug Metab Pharmacokinet 24(4):303–308CrossRefGoogle Scholar
  35. Maia M, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(Suppl 1):S11. doi: 10.1186/1475-2875-10-S1-S11CrossRefPubMedPubMedCentralGoogle Scholar
  36. Malik S, Kumar R, Vats SK, Bhushan S, Sharma M, Ahuja PS (2009) Regeneration in Rheum emodi Wall.: a step towards conservation of an endangered medicinal plant species. Eng Life Sci 2:130–134CrossRefGoogle Scholar
  37. Malik S, Sharma S, Sharma M, Ahuja PS (2010) Direct shoot regeneration from intact leaves of Arnebia euchroma (Royle) Johnston using thidiazuron. Cell Biol Int 34(5):537–542CrossRefGoogle Scholar
  38. Malik S, Sharma M, Ahuja PS (2016) An efficient and economic method for in vitro propagation of Arnebia euchroma using liquid culture system. Am J Biotechnol Med Res 1(1):19–25CrossRefGoogle Scholar
  39. Mathew R, Sankar PD (2012) Effect of methyl jasmonate and chitosan on growth characteristics of Ocimum basilicum L., Ocimum sanctum L. and Ocimum gratissimum L. cell suspension cultures. Afr J Biotech 11(21):4759–4766Google Scholar
  40. Matsuda BM, Surgeoner GA, Heal JD, Tucker AO, Maciarello MJ. (1996) Essential oil analysis and field evaluation of the citrosa plant Pelargonium citrosum as a repellent against populations of Aedes mosquitoes. J Am Mosq Control Assoc 1, 12(1), 69–74Google Scholar
  41. Müller GC, Junnila A, Butler J, Kravchenko VD, Revay EE, Weiss RW, Schlein Y (2009) Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J Vector Ecol 34(1):2–8. doi: 10.1111/j.1948-7134.2009.00002.xCrossRefPubMedGoogle Scholar
  42. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Biores Technol 101(1):372–378. doi: 10.1016/j.biortech.2009.07.048CrossRefGoogle Scholar
  43. Otero ALC, Méndez LYV, Kouznetsov VV (2014) Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. Eur J Med Chem 78:392–400CrossRefGoogle Scholar
  44. Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB (2011) A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478(7370):511–514CrossRefGoogle Scholar
  45. Pohlit A, Lopes N, Gama R, Tadei W, de Andrade Neto V (2011) Patent literature on mosquito repellent inventions which C contain plant essential oils—a review. Planta Med 77(6):598–617. doi: 10.1055/s-0030-1270723CrossRefPubMedGoogle Scholar
  46. Prajapati V, Tripathi A, Aggarwal K, Khanuja S (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Biores Technol 96(16):1749–1757. doi: 10.1016/j.biortech.2005.01.007CrossRefGoogle Scholar
  47. Ravi Kiran S, Sita Devi P (2007) Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol Res 101(2):413–418. doi: 10.1007/s00436-007-0485-zCrossRefPubMedGoogle Scholar
  48. Rehman JU, Ali A, Khan IA (2014) Plant based products: use and development as repellents against mosquitoes: A review. Fitoterapia 95:65–74CrossRefGoogle Scholar
  49. Rodrigues M, Festucci-Buselli RA, Silva LC, Otoni WC (2014) Azadirachtin biosynthesis induction in Azadirachta indica A. Juss cotyledonary calli with elicitor agents. Braz Arch Biol Technol 57(2):155–162CrossRefGoogle Scholar
  50. Santos MRA, Guimarães MCM, Paz ES, Magalhães GMO, Souza CA, Smozinski CV, Nogueira WO (2016) Induction and growth pattern of callus from Piper permucronatum leaves. Rev. Bras. Pl. Med. 18(1):142–148CrossRefGoogle Scholar
  51. Silva S, Sato A, Lage CLS, Gil RAS, Azevedo DA, Esquibel MA. (2005a). Essential Oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. Journal Brazillian Chemical Society, 16(6B): 1387–1390CrossRefGoogle Scholar
  52. Silva S, Sato A, Lagea CLS et al (2005b) Essential oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. J Braz Chem Soc 16(6B):1387–1390CrossRefGoogle Scholar
  53. Sritabutra D, Soonwera M, Waltanachanobon S, Poungjai S (2011) Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton and Harrion. Asian Pacific J Trop Biomed 1(1):S124–S128. doi: 10.1016/S2221-1691(11)60138-XCrossRefGoogle Scholar
  54. Stanczyk NM, Brookfield JF, Ignell R, Logan JG, Field LM (2010) Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc Natl Acad Sci 107(19):8575–8580CrossRefGoogle Scholar
  55. Tikar SN, Mendki MJ, Chandel K, Parashar BD, Prakash S (2008) Susceptibility of immature stages of Aedes (Stegomyia) aegypti vector of dengue and chikungunya to insecticides from India. Parasitol Res 102(5):907–913. doi: 10.1007/s00436-007-0848-5CrossRefPubMedGoogle Scholar
  56. Tisgratog R, Sanguanpong U, Grieco JP, Ngoen-Kluan R, Chareonviriyaphap T (2016) Plants traditionally used as mosquito repellents and the implication for their use in vector control. Acta Trop 157:136–144. doi: 10.1016/j.actatropica.2016.01.024CrossRefPubMedGoogle Scholar
  57. Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19(4):303–309. doi: 10.1002/ptr.163CrossRefPubMedGoogle Scholar
  58. Vasconcelos PFC, Rosa APAT, Pinheiro FP, Rodrigues SG, Rosa EST, Cruz CR, Rosa JFT (1999) Aedes aegypti, Dengue and re-urbanization of yellow fever in Brazil and other South American countries—past and present situation and future perspectives. Dengue Bulletim 33:55–66Google Scholar
  59. Wang Z, Song J, Chen J, Song Z, Shang S, Jiang Z, Han Z (2008) Qsar study of mosquito repellents from terpenoid with a six-member-ring. Bioorg Med Chem Lett 18(9):2854–2859CrossRefGoogle Scholar
  60. WHO (2009) Temephos in drinking-water: use for vector control in drinking-water sources and containers. WHO, GenevaGoogle Scholar
  61. WHO (2012a) Impact of dengue. Global alert and response (GAR). Accessed 15 Jan 2017
  62. WHO (2012b) Dengue and severe dengue. Factsheet no. 117. Accessed 15 Jan 2017
  63. WHO (2016) Surveillance for Zika virus infection, microcephaly and Guillain Barré syndrome. Accessed 25 Jan 2017
  64. WHO (2017a) Diseases out break news. Accessed 27 Jan 2017
  65. WHO (2017b) Zika vírus county classification scheme. Accessed 30 April 2017
  66. Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M, Raikhel AS (2016) MicroRNA-309 targets the homebox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 113(33):E4828–E4836. doi: 10.1073/pnas.1609792113CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333CrossRefGoogle Scholar
  68. Zhou J, Ma G, Bunn E, Zhang X (2007) In vitro shoot organogenesis from Pelargonium X Citrosum Vanleenii leaf and petiole explants. Floric Ornamental Biotechnology 1(2):147–149Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Clarice Noleto Dias
    • 1
  • Ludmilla Santos Silva de Mesquita
    • 1
  • Denise Fernandes Coutinho
    • 1
  • Sonia Malik
    • 2
  1. 1.Department of Pharmacy, Biological and Health Sciences CenterFederal University of MaranhaoSao LuisBrazil
  2. 2.Graduate Program in Health Sciences, Biological and Health Sciences CenterFederal University of MaranhaoSao LuisBrazil

Personalised recommendations