Advertisement

Medicinal Plants: Influence of Environmental Factors on the Content of Secondary Metabolites

  • Cristine Vanz Borges
  • Igor Otavio Minatel
  • Hector Alonzo Gomez-Gomez
  • Giuseppina Pace Pereira Lima

Abstract

Current research in secondary metabolites from medicinal plants should take into account the prevalence and the healing properties of which plant. These compounds have been provided opportunities to development of new drugs leads against several diseases. However, to obtain compounds from edible medicinal plants as well as that used to prepare infusions, numerous challenges are encountered including the environment and stressing factors to which the plants are submitted. Extensive phytochemicals analysis has lead to the identification of biotic and abiotic stress factors that directly influence in the metabolism of plant. This chapter provide an overview of some environmental and stressing factors that may direct the secondary metabolism in medicinal plants.

Keywords

Bioactive compounds Biotic stress Abiotic stress Nutrients Saline stress Drought Stress Radiation 

References

  1. Agati G, Biricolti S, Guidi L et al (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212. doi: 10.1016/j.jplph.2010.07.016CrossRefPubMedGoogle Scholar
  2. Baher ZF, Mirza M, Ghorbanli M, Rezaii MB (2002) The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr J 17:275–277. doi: 10.1002/ffj.1097CrossRefGoogle Scholar
  3. Banchio E, Zygadlo J, Valladares GR (2005) Quantitative variations in the essential oil of Minthostachys mollis (kunth.) griseb. in response to insects with different feeding habits. J Agric Food Chem 53:6903–6906. doi: 10.1021/jf051157jCrossRefPubMedGoogle Scholar
  4. Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824. doi: 10.1016/j.phytochem.2010.08.003CrossRefPubMedGoogle Scholar
  5. Bekele J, Hassanali A (2001) Blend effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry 57:385–391. doi: 10.1016/S0031-9422(01)00067-XCrossRefPubMedGoogle Scholar
  6. Ben TM, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956. doi: 10.1016/j.foodchem.2009.07.055CrossRefGoogle Scholar
  7. Bernstein N, Kravchik M, Dudai N (2010) Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development. Ann Appl Biol 156:167–177. doi: 10.1111/j.1744-7348.2009.00376.xCrossRefGoogle Scholar
  8. Caretto S, Linsalata V, Colella G et al (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394. doi: 10.3390/ijms161125967CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9. doi: 10.1111/j.1751-1097.1999.tb01944.xCrossRefGoogle Scholar
  10. Charles DJ, Joly RJ, Simon JE (1990) Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 29:2837–2840. doi: 10.1016/0031-9422(90)87087-BCrossRefGoogle Scholar
  11. Cheynier V, Comte G, Davies KM et al (2013) Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem 72:1–20. doi: 10.1016/j.plaphy.2013.05.009CrossRefPubMedGoogle Scholar
  12. Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295. doi: 10.1104/pp.124.1.285CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing Ltd., Oxford, pp 1–24Google Scholar
  14. Dar TA, Uddin M, Khan MMA et al (2016) Modulation of alkaloid content, growth and productivity of Trigonella foenum-graecum L. using irradiated sodium alginate in combination with soil applied phosphorus. J Appl Res Med Aromat Plants 3:200–210. doi: 10.1016/j.jarmap.2016.05.003CrossRefGoogle Scholar
  15. Dixon RA, Choudhary AD, Dalkin K et al (1992) Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In: Stafford HA, Ibrahim RK (eds) Phenolic metabolism in plants. Springer, Boston, pp 91–138CrossRefGoogle Scholar
  16. Fang X, Yang C, Wei Y, Ma Q (2011) Genomics grand for diversified plant secondary metabolites. Plant Divers Resour 33:53–64Google Scholar
  17. Ferreira MI, Uliana MR, Costa SM et al (2016) Exclusion of solar UV radiation increases the yield of curcuminoid in Curcuma longa L. Ind Crops Prod 89:188–194. doi: 10.1016/j.indcrop.2016.05.009CrossRefGoogle Scholar
  18. Finley JW (2005) Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann Bot 95:1075–1096. doi: 10.1093/aob/mci123CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gargallo-Garriga A, Sardans J, Pérez-Trujillo M et al (2014) Opposite metabolic responses of shoots and roots to drought. Sci Rep 4:6829. doi: 10.1038/srep06829CrossRefPubMedPubMedCentralGoogle Scholar
  20. Giorgi A, Mingozzi M, Madeo M et al (2009) Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chem 114:204–211. doi: 10.1016/j.foodchem.2008.09.039CrossRefGoogle Scholar
  21. Gobbo-Neto L, Lopes NP (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quim Nova 30:374–381. doi: 10.1590/S0100-40422007000200026CrossRefGoogle Scholar
  22. Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. In: Advances in agronomy, 1st edn. Elsevier Inc., pp 201–230Google Scholar
  23. Harrewijn P, Van Oosten AM, Piron PGM (2000) Natural terpenoids as messengers. Phytochemistry. doi: 10.1007/978-94-010-0767-2CrossRefGoogle Scholar
  24. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecoystems nutrient cycling. Tree 15:238–243PubMedGoogle Scholar
  25. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335. doi: 10.1086/417659CrossRefGoogle Scholar
  26. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi: 10.1146/annurev.micro.57.030502.090938CrossRefPubMedGoogle Scholar
  27. Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48:181–189. doi: 10.1111/j.1744-7909.2006.00181.xCrossRefGoogle Scholar
  28. Ishida M, Hara M, Fukino N et al (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59. doi: 10.1270/jsbbs.64.48CrossRefPubMedPubMedCentralGoogle Scholar
  29. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608. doi: 10.1016/S0261-2194(00)00079-XCrossRefGoogle Scholar
  30. Jaafar HZE, Ibrahim MH, Fakri NFM (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules 17:7305–7322. doi: 10.3390/molecules17067305CrossRefGoogle Scholar
  31. Jakob B, Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. Plant Cell Physiol 37:629–635. doi: 10.1093/oxfordjournals.pcp.a028991CrossRefGoogle Scholar
  32. Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol 32:79–83Google Scholar
  33. Jia M, Chen L, Xin HL et al (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1–14. doi: 10.3389/fmicb.2016.00906CrossRefGoogle Scholar
  34. Johnson IT (2002) Glucosinolates: bioavailability and importance to health. Int J Vitam Nutr Res 72:26–31. doi: 10.1024/0300-9831.72.1.26CrossRefPubMedGoogle Scholar
  35. Khan MAM, Ulrichs C, Mewis I (2011) Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology 21:235–242. doi: 10.1007/s00049-011-0084-4CrossRefGoogle Scholar
  36. Khan MN, Mobin M, Abbas ZK, ALMutairi KA (2016) Impact of varying elevations on growth and activities of antioxidant enzymes of some medicinal plants of Saudi Arabia. Acta Ecol Sin 36:141–148. doi: 10.1016/j.chnaes.2015.12.009CrossRefGoogle Scholar
  37. Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026. doi: 10.1111/j.1365-313X.2008.03476.xCrossRefPubMedGoogle Scholar
  38. Kliebenstein DJ (2013) Making new molecules-evolution of structures for novel metabolites in plants. Curr Opin Plant Biol 16:112–117. doi: 10.1016/j.pbi.2012.12.004CrossRefPubMedGoogle Scholar
  39. Kováčik J, Bačkor M (2007) Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant Soil 297:255–265. doi: 10.1007/s11104-007-9346-xCrossRefGoogle Scholar
  40. Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615. doi: 10.1007/s00299-007-0490-9CrossRefPubMedGoogle Scholar
  41. Kristensen BK, Burhenne K, Rasmussen SK (2004) Peroxidases and the metabolism of hydroxycinnamic acid amides in Poaceae. Phytochem Rev 3:127–140. doi: 10.1023/B:PHYT.0000047800.59980.6eCrossRefGoogle Scholar
  42. Lake JA, Field KJ, Davey MP et al (2009) Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant, Cell Environ 32:1377–1389. doi: 10.1111/j.1365-3040.2009.02005.xCrossRefGoogle Scholar
  43. Landolt W, Günthardt-Goerg MS, Pfenninger I et al (1997) Effect of fertilization on ozone-induced changes in the metabolism of birch (Betula pendula) leaves. New Phytol 137:389–397. doi: 10.1046/j.1469-8137.1997.00843.xCrossRefGoogle Scholar
  44. Lattanzio V, Cardinali A, Ruta C et al (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62. doi: 10.1016/j.envexpbot.2008.09.002CrossRefGoogle Scholar
  45. Levitt J (1980) Responses of plants to environmental stresses. Chilling, freezing and high temperature stresses, vol 1. Academic Press, 497 ppGoogle Scholar
  46. López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174:321–328. doi: 10.1016/j.plantsci.2007.11.012CrossRefGoogle Scholar
  47. Luo Q, Yu B, Liu Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012. doi: 10.1016/j.jplph.2004.11.008CrossRefPubMedGoogle Scholar
  48. Ma CH, Chu JZ, Shi XF et al (2016) Effects of enhanced UV-B radiation on the nutritional and active ingredient contents during the floral development of medicinal chrysanthemum. J Photochem Photobiol B Biol 158:228–234. doi: 10.1016/j.jphotobiol.2016.02.019CrossRefGoogle Scholar
  49. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. doi: 10.1146/annurev-arplant-042811-105439CrossRefPubMedGoogle Scholar
  50. Martínez-Ballesta MC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625. doi: 10.3390/ijms140611607CrossRefPubMedPubMedCentralGoogle Scholar
  51. Medina-Pérez V, López-Laredo AR, Sepúlveda-Jiménez G et al (2015) Nitrogen deficiency stimulates biosynthesis of bioactive phenylethanoid glycosides in the medicinal plant Castilleja tenuiflora Benth. Acta Physiol Plant 37:1–8. doi: 10.1007/s11738-015-1841-8CrossRefGoogle Scholar
  52. Mikkelsen BL, Olsen CE, Lyngkjær MF (2015) Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature. Phytochemistry 118:162–173. doi: 10.1016/j.phytochem.2015.07.007CrossRefPubMedGoogle Scholar
  53. Misra A, Srivastava NK (2000) Influence of water stress on Japanese mint. J Herbs Spices Med Plants 7:51–58. doi: 10.1300/J044v07n01_07CrossRefGoogle Scholar
  54. Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498. doi: 10.1016/S0168-9452(01)00538-6CrossRefGoogle Scholar
  55. Nascimento LBDS, Leal-Costa MV, Menezes EA et al (2015) Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J Photochem Photobiol B Biol 148:73–81. doi: 10.1016/j.jphotobiol.2015.03.011CrossRefGoogle Scholar
  56. Ncube B, Finnie JF, Van Staden J (2014) Carbon-nitrogen ratio and invitro assimilate partitioning patterns in Cyrtanthus guthrieae L. Plant Physiol Biochem 74:246–254. doi: 10.1016/j.plaphy.2013.11.007CrossRefPubMedGoogle Scholar
  57. Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142. doi: 10.1016/j.indcrop.2008.02.005CrossRefGoogle Scholar
  58. Neffati M, Sriti J, Hamdaoui G et al (2011) Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem 124:221–225. doi: 10.1016/j.foodchem.2010.06.022CrossRefGoogle Scholar
  59. Okem A, Stirk WA, Street RA et al (2015) Effects of Cd and Al stress on secondary metabolites, antioxidant and antibacterial activity of Hypoxis hemerocallidea Fisch. & C.A. Mey. Plant Physiol Biochem 97:147–155. doi: 10.1016/j.plaphy.2015.09.015CrossRefPubMedGoogle Scholar
  60. Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism—constitutive chemical defences in cereals. New Phytol 159:101–108. doi: 10.1046/j.1469-8137.2003.00759.xCrossRefGoogle Scholar
  61. Park JS, Choung MG, Kim JB et al (2007) Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep 26:507–516. doi: 10.1007/s00299-006-0255-xCrossRefPubMedGoogle Scholar
  62. Radušienė J, Karpavičienė B, Stanius Ž (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s Worth. Bot Lith 18:101–108. doi: 10.2478/v10279-012-0012-8CrossRefGoogle Scholar
  63. Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agric, Biol, p 10Google Scholar
  64. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151. doi: 10.1104/pp.006858.thenCrossRefPubMedPubMedCentralGoogle Scholar
  65. Sampaio BL, Edrada-ebel R, Batista F, Costa D (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia : a model for environmental metabolomics of plants. Nat Publ Gr 1–11. doi: 10.1038/srep29265
  66. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21. doi: 10.1023/A:1013386921596CrossRefGoogle Scholar
  67. Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforsch Volkenrode 58:139–144Google Scholar
  68. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290. doi: 10.1016/j.tplants.2010.02.005CrossRefPubMedGoogle Scholar
  69. Steinbrenner AD, Agerbirk N, Orians CM, Chew FS (2012) Transient abiotic stresses lead to latent defense and reproductive responses over the Brassica rapa life cycle. Chemoecology 22:239–250. doi: 10.1007/s00049-012-0113-yCrossRefGoogle Scholar
  70. Tabatabaie SJ, Nazari J (2007) Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turk J Agric For 31:245–253Google Scholar
  71. Takshak S, Agrawal SB (2014) Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. J Photochem Photobiol B Biol 140:332–343. doi: 10.1016/j.jphotobiol.2014.08.011CrossRefGoogle Scholar
  72. Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97. doi: 10.1016/j.sajb.2014.04.002CrossRefGoogle Scholar
  73. VanderPlas LHW, Eijkelboom C, Hagendoorn MJM (1995) Relation between primary and secondary metabolism in plant cell suspensions—competition between secondary metabolite production and growth in a model system (Morinda citrifolia). Plant Cell, Tissue Organ Cult 43:111–116CrossRefGoogle Scholar
  74. Vanitha SC, Niranjana SR, Umesha S (2009) Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J Phytopathol 157:552–557. doi: 10.1111/j.1439-0434.2008.01526.xCrossRefGoogle Scholar
  75. Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2:105–113. doi: 10.1016/j.jarmap.2015.09.002CrossRefGoogle Scholar
  76. Wang L, Li W, Ma L et al (2016) Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind Crops Prod 84:248–253. doi: 10.1016/j.indcrop.2016.01.050CrossRefGoogle Scholar
  77. Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346PubMedGoogle Scholar
  78. WHO (2013) WHO traditional medicine strategy 2014–2023. Altern Integr Med :1–78. Available at: http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (accessed on 09 March 2017) (English version).
  79. Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182. doi: 10.1016/j.copbio.2014.01.006CrossRefPubMedGoogle Scholar
  80. Wink M, Schimmer O (1999) Modes of action of defensive secondary metabolites. In: Functions of plant secondary metabolites and their exploitation in biotechnology. CRC Press, Boca Raton, pp 17–112Google Scholar
  81. Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117. doi: 10.1007/s11120-013-9874-6CrossRefPubMedGoogle Scholar
  82. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019. doi: 10.1016/j.foodchem.2010.01.040CrossRefGoogle Scholar
  83. Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D-mannose and 2-deoxy-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate G ramineae. Physiol Mol Plant Pathol 61:315–323. doi: 10.1006/pmpp.2003.0444CrossRefGoogle Scholar
  84. Zhang X, Li C, Nan Z (2011) Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochem Syst Ecol 39:471–476. doi: 10.1016/j.bse.2011.06.016CrossRefGoogle Scholar
  85. Zhao YH, Jia X, Wang WK et al (2016) Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Sci Total Environ 565:586–594. doi: 10.1016/j.scitotenv.2016.05.058CrossRefPubMedGoogle Scholar
  86. Zhi-lin Y, Chuan-chao D, Lian-qing C (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271Google Scholar
  87. Zhou R, Yu X, Ottosen C-O et al (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17:24. doi: 10.1186/s12870-017-0974-xCrossRefPubMedPubMedCentralGoogle Scholar
  88. Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St John’s wort. Plant Physiol Biochem 43:977–984. doi: 10.1016/j.plaphy.2005.07.013CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristine Vanz Borges
    • 1
  • Igor Otavio Minatel
    • 1
  • Hector Alonzo Gomez-Gomez
    • 1
  • Giuseppina Pace Pereira Lima
    • 1
  1. 1.Department of Chemistry and BiochemistryInstitute of Bioscience, Sao Paulo State University—UNESPBotucatuBrazil

Personalised recommendations