Skip to main content

Heavy Metal-Mediated Changes in Growth and Phytochemicals of Edible and Medicinal Plants

  • Chapter
Medicinal Plants and Environmental Challenges

Abstract

One of the most important kinds of environmental contaminates is heavy metals pollution. Plants which are exposing to high metal concentrations illustrate down regulated growth and development. Various alterations in the medical plants production of bioactive compounds have been documented. On the other hand, many researches have illustrated the high toxic residuals of heavy metals in several parts of medical plants which are potent to cause hazard to human health. Interestingly, phytoremediation is most effective and promising methods among several strategies already used to clean up the environment from heavy metals. Medical plants with high potential in heavy metal accumulation can be good candidates for soil heavy metal remediation. The cultivation or deliberate usage of medical plants in soil polluted by heavy metals must be managed carefully to diminish the final heavy metal residuals in marketing products. This chapter explains the mechanisms of plants heavy metal tolerance, the studies on transgenic plants tolerant to heavy metals, heavy metal impacts on medical plant growth and metabolites, phytoremediation ability of medical plants and standard heavy metal residuals concentration in medical plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32(6):707–711

    CAS  PubMed  Google Scholar 

  • Asrar Z, Khavari-Nejad RA, Heidari H (2005) Excess manganese effects on pigments of Mentha spicata at flowering stage. Arch Agron Soil Sci 51(1):101–107

    Article  CAS  Google Scholar 

  • Assuncao AGL, Schat H (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177

    Google Scholar 

  • Banasova V, Horak O (2008) Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145

    Article  CAS  Google Scholar 

  • Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr 18(6):1237–1250

    Article  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    Article  CAS  Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    Article  CAS  PubMed  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters 569:140–148

    Article  CAS  PubMed  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    Article  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51(346):945–953

    CAS  PubMed  Google Scholar 

  • Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603

    Article  CAS  PubMed  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in phragmites australis. Arch Environ Contam Toxicol 55:404–414

    Article  CAS  PubMed  Google Scholar 

  • Celechovska O, Pizova M, Konickova J (2004) The content of zinc and cadmium in medicinal plants and their infusions. Ceska Slov Farm 53:336–339

    CAS  PubMed  Google Scholar 

  • Chiang CM, Chen SP, Chen LFO, Chiang MC, Chien HL, Lin KH (2013) Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. J Plant Biochem Biotechnol 23:266–277

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. doi:10.1155/2014/752708

    Article  Google Scholar 

  • Chizzola R, Lukas B (2006) Variability of the cadmium content in Hypericum species collected in Eastern Austria. Water Air Soil Pollut 170:331–343

    Article  CAS  Google Scholar 

  • Chunilall V, Kindness A, Jonnalagadda SB (2005) Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. J Environ Sci Health B 40:375–384

    Article  CAS  PubMed  Google Scholar 

  • Cook CM, Kostidou A, Vardaka E, Lanaras T (1997) Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants. Photosynthetica 34(2):179–193

    Article  CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulationofcadmium and zinc in Thlaspicaerulescens and Arabidopsis hallari at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MS, Bell PF, Kovar JL (1996) Differential tolerance of canola to arsenic when grown hydroponically or in soil. J Plant Nutr 19(12):1599–1610

    Article  CAS  Google Scholar 

  • Dan TV, Krishnaraj S, Saxena PK (2002) Cadmiumand nickel uptake and accumulation in scented geranium (Pelargonium sp. frensham). Water Air Soil Pollut 137:355–364

    Article  CAS  Google Scholar 

  • Davis MA, Pritchard SG, Boyd RS, Prior SA (2001) Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. New Phytol 150:49–58

    Article  CAS  Google Scholar 

  • De D, De B (2011) Elicitation of diosgenin production in Trigonella foenumgracecum L. seedlings by heavy metals and signaling molecules. Acta Physiol Plant 33:1585–1590

    Article  CAS  Google Scholar 

  • Denholm J (2010) Complementary medicine and heavy metal toxicity in Australia. Web med Central 1:1–6

    Google Scholar 

  • Deniau AX, Pieper B (2006) WMT-B, QTL analysis of cadmium and zinc accumulation in the heavy metal hyper accumulator Thlaspicaerulescens. Theor Appl Genet 113:907–920

    Article  CAS  PubMed  Google Scholar 

  • Dhir B, Sharmila P, Saradhi P (2008) Photosynthetic performance of Salvinianatans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70

    Article  CAS  Google Scholar 

  • Diederichs N, Feiter U, Wynberg R (2006) Production of traditional medicines: technologies, standards and regulatory issues. In: Diederichs N (ed) Commercialising medicinal plants—a Southern African guide. Sun Press, Stellenbosch, pp 155–166

    Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6:e16360. doi:10.1371/journal.pone.0016360

  • Doncheva S, Stoynova Z, Velikova V (2001) Influence of succinate on zinc toxicity of pea plants. J Plant Nutr 24(6):789–804

    Article  CAS  Google Scholar 

  • Doncheva S, Georgieva K, Vassileva V, Stoyanova Z, Popov N, Ignatov G (2005) Effects of succinate on manganese toxicity in pea plants. J Plant Nutr 28(1):47–62

    Article  CAS  Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biot 32:527–533

    Article  CAS  Google Scholar 

  • Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54(1):1–7

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of Zn and Copper to Brassica species: implication for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Eliasova A, Repca KM, Pastırova A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Verlag der Zeitschrift für Naturforschung, Tübingen. http://www.znaturforsch.com

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Eman A, Gad N, Badran NM (2007) Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L. Aus J Basic Appl Sci 1:73–78

    CAS  Google Scholar 

  • Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadey M, Jedrusiak A, Puzyn T (2003) Mercury content and its bio-concentration factors in wild mushrooms at Lukta and Morag, North-Eastern Poland. J Agric Food Chem 51:2832–2836

    Article  CAS  PubMed  Google Scholar 

  • Filatov V, Dowdle J, Smirnoff N (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol 15:3045–3059

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Whitehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep 10:111–114

    Article  CAS  PubMed  Google Scholar 

  • Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edophic Pb and Zn phytoremediation over a short growth periods. Int Biodeters Biodeg 54:245–250

    Article  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damages in tobacco roots, but no DNA damage, somatic mutations orhomologous recombinations in tobacco leaves. Mutat Res Genet Toxicol Environ Mut 559:49–57

    Article  CAS  Google Scholar 

  • Grejtovsky A, Repcak M, Eliasova A, Markusova K (2001) Effect of cadmium on active principle contents of Matricaria recutita L. Herba Pol 47:203–208

    CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630. doi:10.1016/j.chemosphere.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  • Guo XH, Gao WY, Chen HX, Huang LQ (2005) Effects of mineral cations on the accumulation of tanshinone II A and protocatechuic aldehyde in the adventitious root culture of Salvia niltiorrhiza. Zhongguo Zhong Yao Za Zhi 30:885–888

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella LR, Guevara-Garcia AA (2009) Heavy metal adaptation. eLS encyclopedia of life sciences. Wiley, Ltd. Published Online: 15 Mar 2009, doi:10.1002/9780470015902.a0001318

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  CAS  PubMed  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Hussain A, Abbas N, Arshad F et al (2013) Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agric Sci 4(5):262–265

    CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the sesbania Drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  CAS  PubMed  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acumip A nickel-accumulating plant from New Caledonia. Science 193:579–580

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1990) Azolla pinnata and Lemna minor L. for removal of led and Zn from polluted water. Water Res 24:177–183

    Article  CAS  Google Scholar 

  • Jayakumar K, Abdul Jal eel C, Vijayarengan P (2007) Changes in growth, biochemical constituents and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk J Biol 31:127–136

    Google Scholar 

  • Jayakumar K, Jaleel CA, Azooz MM (2008) Phytochemical changes in green gram (Vigna radiata) under cobalt stress. Glob J Mol Sci 3(2):46–49

    CAS  Google Scholar 

  • Jayakumar K, Rajesh M, Baskaran L, Vijayarengan P (2013) Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int J Food Nutr Saf 4(2):62–69

    Google Scholar 

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic. Biores Technol 76(1):9–13

    Article  CAS  Google Scholar 

  • Jin XF, Liu D (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32:1642–1656

    Article  CAS  Google Scholar 

  • Kabir M, Iqbal MZ, Shafiq M (2009) Effects of lead on seedling growth of Thespesia populnea L. Adv Environ Biol 3(2):184–190

    CAS  Google Scholar 

  • Kartosentono S, Suryawati S, Indrayanto G, Zaini NC (2002) Accumulation of Cd2+ and Pb2+ in the suspension cultures of Agave amaniensis and Costus speciosus and the determination of the culture’s growth and phytosteroid content. Biotechnol Lett 24:687–690

    Article  CAS  Google Scholar 

  • Kasparova M, Siatka T (2004) Abiotic elicitation of the explant culture of Rheum palmatum L. by heavy metals. Ceska Slov Farm 53:252–255

    CAS  PubMed  Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis Iron-Regulated Transporter1 metal transporter requires lysine residues. Plant Physiol 146:1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid BY, Tinsley J (1980) Some effects of nickel toxicity on rye grass. Plant Soil 55(1):139–144

    Article  CAS  Google Scholar 

  • Kim D, Pedersen H, Chin C (1991) Stimulation of berberine production in Thalictrum rugosum suspension cultures in response to addition of cupric sulfate. Biotechnol Lett 13:213–216

    Article  CAS  Google Scholar 

  • Kim IS, Shin SY, Kim YS, Kim HY, Yoon HS (2009) Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479–487

    Article  CAS  PubMed  Google Scholar 

  • Kjær C, Elmegaard N (1996) Effects of copper sulfate on black bindweed (Polygonum convolvulus L.). Ecotoxicol Environ Saf 33(2):110–117

    Article  PubMed  Google Scholar 

  • Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytorem 5:197–220

    Article  CAS  Google Scholar 

  • Kumar S, Narula A, Sharma MP, Srivastava PS (2004) In vitro propagation of Pluchea lanceolata, a medicinal plant, and effect of heavy metals and different aminopurines on quercetin content. In Vitro Cell Dev Biol Plant 40:171–176

    Article  CAS  Google Scholar 

  • Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  CAS  PubMed  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNramp3 and AtNramp4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lin YC, Kao CH (2005) Nickel toxicity of rice seedlings: cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ Bioinform 2:131–136

    CAS  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochem 71:614–618

    Article  CAS  Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metal when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, JinHong Q, Hansen D, Zayed A, Terry N (1998) Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 23:2316–2321

    Article  CAS  Google Scholar 

  • Manivasagaperumal R, Balamurugan S, Thiyagarajan G, Sekar J (2011) Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr Bot 2(5):11–15

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Article  CAS  PubMed  Google Scholar 

  • Memon RA, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Misra A (1992) Effect of zinc stress in Japanese mint as related to growth, photosynthesis, chlorophyll content and secondary plant products-the monoterpenes. Photosynthetica 26:225–234

    CAS  Google Scholar 

  • Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Hirano K, Kato S, Obata H (2008) Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides and its metal transport and resistance abilities in yeast. Soil Sci Plant Nutr 54:86–94

    Article  CAS  Google Scholar 

  • Mkandavire M, Dude EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony. Germany Sci Tot Environ 336:81–89

    Article  CAS  Google Scholar 

  • Moral R, Navarro Pedreno J, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18(4):815–822

    Article  CAS  Google Scholar 

  • Moustakas M, Lanaras T, Symeonidis L, Karataglis S (1994) Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica 30(3):389–396

    CAS  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49:251–257

    Article  CAS  Google Scholar 

  • Narula A, Kumar A, Srivastava PS (2005) Abiotic metal stress enhances diosgenin yield in Dioscorea bulbifera L. cultures. Plant Cell Rep 24:250–254

    Article  CAS  PubMed  Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ ContamToxicol 203:139–149

    CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distribution Funct Ecol Plants 204:316–324

    Article  Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2(4):969–974

    CAS  Google Scholar 

  • Nielsen HD, Brown MT, Brownlee C (2003) Cellular responses of developing Fucus serratus embryos exposed to elevated concentrations of Cu2+. Plant Cell Environ 26:1737–1747

    Article  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13:637–646

    Article  CAS  PubMed  Google Scholar 

  • Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y (2013) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Protec. doi:10.4236/jep.2013.44A008

    Article  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15(6):719–725

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC et al (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:1123–1132

    Article  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  PubMed  Google Scholar 

  • Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the southeastern united states. Northeastern Natur 16:155–162

    Article  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    Article  CAS  Google Scholar 

  • Rai V, Khatoon S, Bisht SS, Mehrotra S (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61:1644–1650

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environ Pollut A Ecol Biol 31:277–287

    Article  CAS  Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  PubMed  Google Scholar 

  • Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Sarma H, Deka S, Deka H, Saikia RR (2012) Accumulation of heavy metals in selected medicinal plants. Rev Environ Contam Toxicol 214:63–86

    Google Scholar 

  • Selvam A, Wong JW (2008) Phytochelatin systhesis and cadmium uptake of Brassica napus. Environ Technol 29:765–773

    Article  CAS  PubMed  Google Scholar 

  • Sharma DM, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Article  CAS  PubMed  Google Scholar 

  • Sharma NC, Gardea-Torresdey JL, Parsons J, Sahi SV (2004) Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environ Toxicol Chem 23:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591

    Article  CAS  PubMed  Google Scholar 

  • Shekar CHC, Sammaiah D, Shasthree T, Reddy KJ (2011) Effect of mercury on tomato growth and yield attributes. Int J Pharma Bio Sci 2(2):B358–B364

    Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278(1–2):341–349

    Article  CAS  Google Scholar 

  • Shenker M, Plessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23(3):345–351

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Kim IS, Kim YH, Park HM, Lee JY, Kang HG et al (2008) Scavenging reactive oxygen species by rice dehydroascorbate reductase alleviates oxidative stresses in Escherichia coli. Mol Cells 26:616–620

    CAS  PubMed  Google Scholar 

  • Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H (2005) Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochem Biophys Res Commun 331:675–680

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. doi:10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacodise-a content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environ Monit Assess 80:17–31

    Article  CAS  PubMed  Google Scholar 

  • Sivaci A, Elmas E, Gumu F, Sivaci ER (2008) Removal of cadmium by Myriophyllum heterophyllum michx and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp V, Von arb M, Stewart MJ (2000) Metal concentrations in plants and urine from patients treated with traditional remedies. Forensic Sci Int 114:89–95

    Article  CAS  PubMed  Google Scholar 

  • Street RA (2012) Heavy metals in medicinal plant products-an African perspective. South African J Bot 82:67–74

    Article  CAS  Google Scholar 

  • Sun R, Jin C, Zhou Q (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61:67–74

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005). Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66(21):2549–2556

    Google Scholar 

  • Talke IN, Kramer U, Hanikenne M (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi V (2006) Induction of hypericin in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • Tumova V, Blazkova R (2002) Effect on the formation of flavonoids in the culture of Ononis arvensis L. in vitro by the action of CrCl3. Ceska Slov Farm 51:44–46

    CAS  PubMed  Google Scholar 

  • Tumova L, Poustkova J, Tuma V (2001) CoCl2 and NiCl2 elicitation and flavonoid production in Ononis arvensis L. culture in vitro. Acta Pharmaceutica 51:159–162

    CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud Int J 55:35. doi:https://doi.org/10.1186/1999-3110-55-35

    Article  CAS  Google Scholar 

  • Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The G alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Biores Technol 98(1):82–88

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q (2008) Trace elements in agro-ecosystems. In: Prasad MNV (ed) Trace elements as contaminants and nutrients consequences in ecosystems and human health. Wiley, New Jersey, USA, pp 55–80

    Chapter  Google Scholar 

  • Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246

    Article  CAS  PubMed  Google Scholar 

  • Willems G, Dräger DB, Courbot M (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. Halleri (Brassicaceae) an analysis of quantitative trait loci. Genetics 176:659–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J (2012) Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 7:e37383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  CAS  PubMed  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2925–2940

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W et al (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Yourtchi MS, Bayat HR (2013) Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int J Agri Crop Sci 6(15):1099–1103

    CAS  Google Scholar 

  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

    Article  CAS  Google Scholar 

  • Zengin FK (2006) The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J Environ Biol 27:441–448

    CAS  PubMed  Google Scholar 

  • Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70:147–151

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci 166:507–514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnaz Hatami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fahimirad, S., Hatami, M. (2017). Heavy Metal-Mediated Changes in Growth and Phytochemicals of Edible and Medicinal Plants. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_11

Download citation

Publish with us

Policies and ethics