Skip to main content

Efficient Rational Proofs for Space Bounded Computations

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10575))

Included in the following conference series:

Abstract

We present new protocols for the verification of space bounded polytime computations against a rational adversary. For such computations requiring sublinear space our protocol requires only a verifier running in sublinear-time. We extend our main result in several directions: (i) we present protocols for randomized complexity classes, using a new composition theorem for rational proofs which is of independent interest; (ii) we present lower bounds (i.e. conditional impossibility results) for Rational Proofs for various complexity classes.

Our new protocol is the first rational proof not based on the circuit model of computation, and the first sequentially composable protocols for a well-defined language class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also point out that in [16] a rational protocol for P, polytime computations, is presented, but for the case of a computationally bounded prover, i.e. a rational argument.

  2. 2.

    This is basically the covert adversary model for multiparty computation introduced in [2].

  3. 3.

    We point out that the new machine \(M_2\) introduces a small error. For our specific case this error keeps the overall error probability negligible and we can ignore it.

  4. 4.

    A common reference string is a string generated by a trusted party to which both the prover and the verifier have access; it is a common assumption in cryptographic literature, e.g. Non-Interactive Zero Knowledge [7].

  5. 5.

    Since we only sketch our proof the reader is invited to see details of the proof [15].

  6. 6.

    We stress that in this comparison we are interested in protocols with similar efficiency parameters. For example, the work in [3] presents several large complexity classes for which we have rational proofs. However, these protocols require a polynomial verifier and do not obtain a noticeable reward gap.

  7. 7.

    The construction in Theorem 5.1 in [4] is shown to be sequentially composable in [8].

References

  1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@ home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

    Article  Google Scholar 

  2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar, P.D., Micali, S.: Rational proofs. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, pp. 1017–1028. ACM (2012)

    Google Scholar 

  4. Azar, P.D., Micali, S.: Super-efficient rational proofs. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 29–30. ACM (2013)

    Google Scholar 

  5. Babai, L.: Trading group theory for randomness. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 421–429. ACM (1985)

    Google Scholar 

  6. Belenkiy, M., Chase, M., Christopher Erway, C., Jannotti, J., Küpçü, A., Lysyanskaya, A.: Incentivizing outsourced computation. In: Proceedings of the ACM SIGCOMM 2008 Workshop on Economics of Networked Systems, NetEcon 2008, Seattle, WA, USA, 22 August 2008, pp. 85–90 (2008)

    Google Scholar 

  7. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campanelli, M., Gennaro, R.: Sequentially composable rational proofs. In: Khouzani, M.H.R., Panaousis, E., Theodorakopoulos, G. (eds.) GameSec 2015. LNCS, vol. 9406, pp. 270–288. Springer, Cham (2015). doi:10.1007/978-3-319-25594-1_15

    Chapter  Google Scholar 

  9. Chen, J., McCauley, S., Singh, S.: Rational proofs with multiple provers. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp. 237–248. ACM (2016)

    Google Scholar 

  10. De Agostino, S., Silvestri, R.: Bounded size dictionary compression: SC\(_k\)-completeness and NC algorithms. Inf. Comput. 180(2), 101–112 (2003)

    Article  MATH  Google Scholar 

  11. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational arguments: single round delegation with sublinear verification. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 523–540. ACM (2014)

    Google Scholar 

  16. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational sumchecks. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 319–351. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_12

    Chapter  Google Scholar 

  17. Halpern, J.Y., Pass, R.: I don’t want to think about it now: Decision theory with costly computation. arXiv preprint arXiv:1106.2657 (2011)

  18. Johnson, D.S.: The np-completeness column: the many limits on approximation. ACM Trans. Algorithms (TALG) 2(3), 473–489 (2006)

    Article  MathSciNet  Google Scholar 

  19. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of no-signaling proofs. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 485–494. ACM (2014)

    Google Scholar 

  20. Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random nc. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 22–32. ACM (1985)

    Google Scholar 

  21. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006). doi:10.1007/11786986_21

    Chapter  Google Scholar 

  22. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: Folding@ home and genome@ home: Using distributed computing to tackle previously intractable problems in computational biology. arXiv preprint arXiv:0901.0866 (2009)

  23. Makarychev, K., Manokaran, R., Sviridenko, M.: Maximum quadratic assignment problem: reduction from maximum label cover and LP-based approximation algorithm. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 594–604. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_50

    Chapter  Google Scholar 

  24. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Papakonstantinou, P.A.: Constructions, lower bounds, and new directions in Cryptography and Computational Complexity. Ph.D. Thesis, University of Toronto (2010)

    Google Scholar 

  26. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for delegating computation. In: Proceedings of the Forty-Eighth Annual ACM on Symposium on Theory of Computing. ACM (2016). (page to appear)

    Google Scholar 

  27. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Commun. ACM 58(2), 74–84 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jesper Buus Nielsen for suggesting the approach of the construction in Theorem 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Campanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Campanelli, M., Gennaro, R. (2017). Efficient Rational Proofs for Space Bounded Computations. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds) Decision and Game Theory for Security. GameSec 2017. Lecture Notes in Computer Science(), vol 10575. Springer, Cham. https://doi.org/10.1007/978-3-319-68711-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68711-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68710-0

  • Online ISBN: 978-3-319-68711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics