Advertisement

Synthesis and Application of Silica Nanoparticles-Based Biohybrid Sorbents

  • Ritu Painuli
  • Sapna Raghav
  • Dinesh KumarEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Progress in the silicon oxide/polymer hybrid composite materials combines the unique attributes of the inorganic fillers and the organic polymers. Organic/inorganic nanocomposites are usually consulted as the organic polymer having a building block of the inorganic nanoscale. To recognize the interface interaction, nanoscale hybridization of organic polymers and Silica fillers, a new approach has been worked to synthesize hybrid materials in nanotechnology. Thus, this chapter explores the preparation Silica hybrid composite materials and their broad applications, such as functional coatings, biomedical applications, and so on.

Keywords

Silica nanoparticles Biohybrids Mesoporous Silica Preparation Applications 

Notes

Acknowledgements

We gratefully acknowledge support from the Ministry of Science and Technology and Department of Science and Technology, Government of India under the scheme of Establishment of Women Technology Park, for providing the necessary financial support to carry out this study vide letter No, F. No SEED/WTP/063/2014.

Conflict of Interest

The Authors do not have any conflict of interest.

References

  1. 1.
    Zou, H., S. Wu, and J. Shen. 2008. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews 108: 3893–3957. doi: 10.1021/cr068035q.CrossRefGoogle Scholar
  2. 2.
    Lee, D.W., and B.R. Yoo. 2014. Polymer nanotechnology: Nanocomposites. Journal of Industrial and Engineering Chemistry 20: 3204–3947.Google Scholar
  3. 3.
    Ciriminna, R., A. Fidalgo, V. Pandarus, F. Beland, L.M. Ilharco, and M. Pagliaro. 2013. The sol-gel route to advanced silica-based materials and recent applications. Chemical Reviews 113: 6592–6620. doi: 10.1021/cr300399c.CrossRefGoogle Scholar
  4. 4.
    Bergna H.E., and W.O. Roberts. 2015. Colloidal silica: Fundamentals and applications. CRC Press.Google Scholar
  5. 5.
    Iler, K. 1979. The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley.Google Scholar
  6. 6.
    Lee, M.S., and M.J. Jo. 2002. Coating of methyltriethoxysilane—Modified colloidal silica on polymer substrates for abrasion resistance. Journal of Sol-Gel Science and Technology 24: 175–180. doi: 10.1023/A:1015208328256.CrossRefGoogle Scholar
  7. 7.
    Althues, H., J. Henle, and S. Kaskel. 2007. Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews 36: 1454–1465. doi: 10.1039/B608177K.CrossRefGoogle Scholar
  8. 8.
    Rambo, M.K.D., A.L. Cardoso, D.B. Bevilaqua, T.M. Rizzetti, L.A. Ramos, G.H. Korndorfer, and A.F. Martins. 2011. Silica from rice husk ash as an additive for rice plant. Journal of Agronomy 10: 99–104. doi: 10.3923/ja.2011.99.104.CrossRefGoogle Scholar
  9. 9.
    Shim, J., P. Velmurugan, and B.T. Oh. 2015. Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol-gel processing. Journal of Industrial and Engineering Chemistry 30: 249–253. doi: 10.1016/j.jiec.2015.05.029.CrossRefGoogle Scholar
  10. 10.
    Velmurugan, P., J. Shim, K.J. Lee, S.S. Min Cho, S.K. Lim, K.M. Seo, K.S. Cho, B. Bang, and B.T. Oh. 2015. Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. Journal of Industrial and Engineering Chemistry 29: 298–303. doi: 10.1016/j.jiec.2015.04.009.CrossRefGoogle Scholar
  11. 11.
    Kellar, J.J. 2006. Functional fillers and nanoscale minerals: New Markets/new Horisons. SME.Google Scholar
  12. 12.
    Trewyn, B.G., I.I. Slowing, S. Giri, H.T. Chen, and V.S.Y. Lin. 2007. Synthesis and functionalization of a mesoporous silica nanoparticle-based on the sol-gel process and applications in controlled release. Accounts of Chemical Research 40: 846–853. doi: 10.1021/ar600032u.CrossRefGoogle Scholar
  13. 13.
    Zhao, B., and W. Brittain. 2000. Polymer brushes: Surface-immobilized macromolecules. Progress in Polymer Science 25: 677. doi: 10.1016/S0079-6700(00),00012-5.CrossRefGoogle Scholar
  14. 14.
    Belder, G.F., G.T. Brinke, and G. Hadziioannou. 1997. Influence of anchor block size on the thickness of adsorbed block copolymer layers. Langmuir 13: 4102–4105. doi: 10.1021/la960379w.CrossRefGoogle Scholar
  15. 15.
    Li, S., M.M. Lin, M.S. Toprak, D.K. Kim, and M. Muhammed. 2014. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews 1: 5214. doi: 10.3402/nano.v1i0.5214.CrossRefGoogle Scholar
  16. 16.
    Wei, L., N. Hu, and Y. Zhang. 2010. Synthesis of polymer—Mesoporous silica nanocomposites. Materials 3: 4066–4079. doi: 10.3390/ma3074066.CrossRefGoogle Scholar
  17. 17.
    Guyard, A., J. Persello, J.P. Boisvert, and B. Cabane. 2006. Relationship between the polymer/silica interaction and properties of silica composite materials. Journal of Polymer Science Part B: Polymer Physics 44: 1134. doi: 10.1002/polb.20768.CrossRefGoogle Scholar
  18. 18.
    Ahn, S.H., S.H. Kim, and S.G. Lee. 2004. Surface-modified silica nanoparticle–reinforced poly(ethylene 2,6-naphthalate). Journal of Applied Polymer Science 94: 812–818. doi: 10.1002/app.21007.CrossRefGoogle Scholar
  19. 19.
    Mahdavian, A.R., M. Ashjari, and A.B. Makoo. 2007. Preparation of poly (styrene–methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatibilization. European Polymer Journal 43: 336–344. doi: 10.1016/j.eurpolymj.2006.10.004.CrossRefGoogle Scholar
  20. 20.
    Tang, J.C., G.L. Lin, H.C. Yang, G.J. Jiang, and Y.W. Chen-Yang. 2007. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science 104: 4096–4105. doi: 10.1002/app.26041.CrossRefGoogle Scholar
  21. 21.
    Ding, X.F., Z.C. Wang, D.X. Han, Y.J. Zhang, Y.F. Shen, Z.J. Wang, and L. Niu. 2006. An effective approach to the synthesis of poly(methyl methacrylate)/silica nanocomposites. Nanotechnology 17: 4796–4801. doi: 10.1088/0957-4484/17/19/002.CrossRefGoogle Scholar
  22. 22.
    Wu, T.M., and M.S. Chu. 2005. Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science 98: 2058–2063. doi: 10.1002/app.22406.CrossRefGoogle Scholar
  23. 23.
    Lai, Y.H., M.C. Kuo, J.C. Huang, and M. Chen. 2007. On the PEEK composites reinforced by surface-modified nano-silica. Materials Science and Engineering A 458: 158–169. doi: 10.1016/j.msea.2007.01.085.CrossRefGoogle Scholar
  24. 24.
    Perro, A., S. Reculusa, E. Bourgeat-Lami, E. Duguet, and S. Ravaine. 2006. Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 284: 78–83. doi: 10.1016/j.colsurfa.2005.11.073.CrossRefGoogle Scholar
  25. 25.
    Lin, J., J.A. Siddiqui, and R.M. Ottenbrite. 2001. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polymers for Advanced Technologies 12: 285–292. doi: 10.1002/pat.64.CrossRefGoogle Scholar
  26. 26.
    Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar. 2013. Surface modification of inorganic nanoparticles for the development of organic–inorganic nanocomposites: A review. Progress in Polymer Science 38: 1232–1261. doi: 10.1016/j.progpolymsci.2013.02.003.CrossRefGoogle Scholar
  27. 27.
    Plueddemann E.P. 1991. Silane coupling agents. 2nd ed. http://dx.doi.org/10.1007/978-1-4899-2070-6.
  28. 28.
    Yoo, B.R., D.E. Jung, and J.S. Han. 2009. Materials Research Society Symposium Proceedings, 1174-V06-08.Google Scholar
  29. 29.
    Bracho, D., V.N. Dougnac, H. Palza, and R. Quijada. 2012. Functionalization of silica nanoparticles for polypropylene nanocomposite applications. Journal of Nanomaterials, 263915. http://dx.doi.org/10.1155/2012/263915.
  30. 30.
    Zheng, K., L. Chen, Y. Li, and P. Cui. 2004. Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polymer Engineering & Science 44: 1077–1082. doi: 10.1002/pen.20100.CrossRefGoogle Scholar
  31. 31.
    Li, Chunzhao, and B.C. Benicewicz. 2005. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition–fragmentation chain transfer polymerization. Macromolecules 38: 5929–5936. doi: 10.1021/ma050216r.CrossRefGoogle Scholar
  32. 32.
    Liu, G., M. Cai, F. Zhou, and W. Liu. 2014. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. The Journal of Physical Chemistry B 118: 4920–4931. doi: 10.1021/jp500074g.CrossRefGoogle Scholar
  33. 33.
    Zhang, M.Q., M.Z. Rong, and K. Friedrich. 2003. In Handbook of organic-inorganic hybrid materials and nanocomposites, vol. 2, ed. H.S. Nalwa, 113. Stevenson Ranch, CA: American Scientific Publishers.Google Scholar
  34. 34.
    Lei, Y.D., Z.H. Tang, B.C. Guo, L.X. Zhu, and D.M. Jia. 2010. Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites. Express Polymer Letters 4: 692–703. doi: 10.3144/expresspolymlett.2010.84.CrossRefGoogle Scholar
  35. 35.
    Perez, L.D., B.L. Lopez. 2012 Thermal characterization of SBR/NBR blends reinforced with a mesoporous silica. Journal of Applied Polymer Science, E328–E333. doi: 10.1002/app.35689.
  36. 36.
    Suzuki, N., S. Kiba, Y. Kamachi, N. Miyamoto, and Y. Yamauchi. 2011. Mesoporous silica as smart inorganic filler: Preparation of robust silicone rubber with low thermal expansion property. Journal of Materials Chemistry 21: 5338–5344. doi: 10.1039/C0JM03767B.CrossRefGoogle Scholar
  37. 37.
    Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Bimodal filler system consisting of mesoporous silica particles and silica nanoparticles toward efficient suppression of thermal expansion in silica/epoxy composites. Journal of Materials Chemistry 2: 14941–14947. doi: 10.1039/C1JM12405F.CrossRefGoogle Scholar
  38. 38.
    Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Low dielectric property of novel mesoporous silica/polymer composites using smart molecular caps: Theoretical calculation of air space encapsulated inside mesopores. Microporous and Mesoporous Materials 138: 123–131. doi: 10.1016/j.micromeso.2010.09.020.CrossRefGoogle Scholar
  39. 39.
    Hwang, S., and P.P. Hsu. 2013. Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. Journal of Industrial and Engineering Chemistry 19: 1377–1383. doi: 10.1016/j.jiec.2012.12.043.CrossRefGoogle Scholar
  40. 40.
    Mittal, V. 2015. Synthesis techniques for polymer nanocomposites. Wiley.Google Scholar
  41. 41.
    Ou, C.F., and M.C. Hsu. 2007. Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. Journal of Polymer Research 14: 373–378. doi: 10.1007/s10965-007-9119-5.CrossRefGoogle Scholar
  42. 42.
    Huang, J.W., Y.L. Wen, C.C. Kang, and M.Y. Yeh. 2007. Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica. Polymer Journal 39: 654–658. doi: 10.1295/polymj.PJ2006217.CrossRefGoogle Scholar
  43. 43.
    Yang, F., and G.L. Nelson. 2004. PMMA/silica nanocomposite studies: Synthesis and properties. Journal of Applied Polymer Science 91: 3844–3850. doi: 10.1002/app.13573.CrossRefGoogle Scholar
  44. 44.
    Jin, Y.G., S.Z. Qiao, L. Zhang, Smarta S. XuaZP, J.C.D. da Costa, and G.Q. Lu. 2008. Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. Journal of Power Sources 185: 664–669. doi: 10.1016/j.jpowsour.2008.08.094.CrossRefGoogle Scholar
  45. 45.
    Yabu, H., H. Satoh, M. Kanahara, Y. Saito, and M. Shimomura. 2014. Spontaneous formation of silica–polymer composite particles by simple co-precipitation process. Japanese Journal of Applied Physics 53: 05FT02.Google Scholar
  46. 46.
    Kim, S., E. Kim, and W. Kim. 2005. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. Journal of Colloid and Interface Science 292: 93–98. doi: 10.1016/j.jcis.2005.09.046.CrossRefGoogle Scholar
  47. 47.
    Cai, L.F., X.B. Huang, M.Z. Rong, W.H. Ruan, and M.Q. Zhang. 2006. Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 47: 7043–7050. doi: 10.1016/j.polymer.2006.08.016.CrossRefGoogle Scholar
  48. 48.
    Hashhemi-Nasab, R., and S.M. Mirabedini. 2013. Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Progress in Organic Coatings 76: 1016–1023. doi: 10.1016/j.porgcoat.2013.02.016.CrossRefGoogle Scholar
  49. 49.
    Fukushima, H., M. Kohri, T. Kojima, T. Taniguchi, K. Saito, and T. Nakahira. 2012. Surface-initiated enzymatic vinyl polymerization: Synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym. Chem 3: 1123–1125. doi: 10.1039/c2py20036h.CrossRefGoogle Scholar
  50. 50.
    Fu, H.P., R.Y. Hong, Y.J. Zhang, H.Z. Li, B. Xu, Y. Zheng, and D.G. Wei. 2009. Preparation and properties investigation of PMMA/silica composites derived from silicic acid. Polymers for Advanced Technologies 20: 84–91. doi: 10.1002/pat.1226.CrossRefGoogle Scholar
  51. 51.
    Pourjavadi, A., Z.M. Tehrani, and S. Joka. 2015. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. Journal of Industrial and Engineering Chemistry 28: 45–53. doi: 10.1016/j.jiec.2015.01.021.CrossRefGoogle Scholar
  52. 52.
    Salernitano, E., and C. Migliaresi. 2003. Composite materials for biomedical applications: A review. Journal of Applied Biomaterials & Biomechanics 1: 3–18.Google Scholar
  53. 53.
    Steven, J.P., M.Y. Irani, K. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly (L-lactide). Nanomedicine 7: 995. doi: 10.2217/nnm.11.176.CrossRefGoogle Scholar
  54. 54.
    Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell. Nanoscale Research Letters 10: 82. doi: 10.1186/s11671-015-0808-4.CrossRefGoogle Scholar
  55. 55.
    Rho, W.Y., H.M. Kim, S. Kyeong, Y.L. Kang, D.H. Kim, H. Kang, C. Jeong, D.E. Kim, Y.S. Lee, and B.H. Jun. 2014. Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry 20: 2646–2649. doi: 10.1016/j.jiec.2013.12.014.CrossRefGoogle Scholar
  56. 56.
    Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nanosystem for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi: 10.1080/09205063.2015.1012035.CrossRefGoogle Scholar
  57. 57.
    Zhang, T., L. Zhang, and C. Li. 2011. Study of the preparation and properties of PBT/Epoxy/SiO2 nanocomposites. Journal of Macromolecular Science - Physics 50: 967. doi: 10.1080/00222348.2010.497112.CrossRefGoogle Scholar
  58. 58.
    Liu, H., J. Xu, B. Guo, and X. He. 2014. Preparation and performance of silica/polypropylene composite separator for lithium ion batteries. Journal Materials Science 49: 6961. doi: 10.1007/s10853-014-8401-2.CrossRefGoogle Scholar
  59. 59.
    Raveh, M., L. Liu, and D. Mandler. 2013. Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Physical Chemistry Chemical Physics 15: 10876. doi: 10.1039/c3cp50457c.CrossRefGoogle Scholar
  60. 60.
    Kashiwagi, K., A.B. Morgan, J.M. Antonucci, M.R. VanLandingham, R.H. Harris, W.H. Awad, and J.R. Shields. 2003. Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89: 2072–2078. doi: 10.1002/app.12307.CrossRefGoogle Scholar
  61. 61.
    Chen, C., Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, and Y.W. Mai. 2014. High-performance epoxy/silica coated silver nanowire composites as under fill material for electronic packaging. Composites Science and Technology 105: 80–85. doi: 10.1016/j.compscitech.2014.10.002.CrossRefGoogle Scholar
  62. 62.
    Wong, C.P., and R.S. Bollampally. 1999. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. Journal of Applied Polymer Science 74: 3396–3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396.CrossRefGoogle Scholar
  63. 63.
    Yeh, J.M., and K.C. Chang. 2014. Nanofillers a surface coating—A review. Journal of Industrial and Engineering Chemistry 20: 275–291.Google Scholar
  64. 64.
    Golestaneh, M., G. Amini, G.D. Najafpour, and M.A. Beygi. 2010. Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Applied Sciences Journal 9: 216.Google Scholar
  65. 65.
    Yin, P., M. Xu, W. Liu, R. Qu, X. Liu, and Q. Xu. 2014. High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. Journal of Industrial and Engineering Chemistry 20: 379–390. doi: 10.1016/j.jiec.2013.04.032.CrossRefGoogle Scholar
  66. 66.
    Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi: 10.1016/j.jiec.2014.02.005.CrossRefGoogle Scholar
  67. 67.
    Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi: 10.1002/app.39973.Google Scholar
  68. 68.
    Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi: 10.1016/j.jenvman.2012.05.031.CrossRefGoogle Scholar
  69. 69.
    Mishra, A.K., T. Kuila, D.Y. Kim, N.H. Kim, and J.H. Lee. 2012. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 22: 24366–24372. doi: 10.1039/C2JM33288D.CrossRefGoogle Scholar
  70. 70.
    Guzmán, C., A. Alvarez, O.E. Herrera, R. Nava, J.L. Garcia, L.A. Godínez, L.G. Arriaga, and W. Mérida. 2011. Water transport in composite membranes containing silica: temperature and relative humidity effects. International Journal of Electrochemical Science 6: 4648–4666. doi: 10.1039/C2JM33288D.Google Scholar
  71. 71.
    Jang, S.Y., and S.H. Han. 2015. Sulfonated poly SEPS/hydrophilic-SiO2 composite membranes for polymer electrolyte membranes (PEMs). Journal of Industrial and Engineering Chemistry 23: 285–289. doi: 10.1016/j.jiec.2014.08.030.CrossRefGoogle Scholar
  72. 72.
    Wang, H., A.B. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, and Y. Yan. 2002. Nafion-bifunctional silica composite proton conductive membrane. Journal of Materials Chemistry 12: 834–837. doi: 10.1039/B107498A.CrossRefGoogle Scholar
  73. 73.
    Liu, H., C. Gong, J. Wang, X. Liu, H. Liu, F. Cheng, G. Wang, G. Zheng, C. Qin, and S. Wen. 2016. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydrate Polymers 136: 1379–1385. doi: 10.1016/j.carbpol.2015.09.085.CrossRefGoogle Scholar
  74. 74.
    Kim, D.J., M.J. Jo, and S.Y. Nam. 2015. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. Journal of Industrial and Engineering Chemistry 21: 36. doi: 10.1016/j.jiec.2014.04.030.CrossRefGoogle Scholar
  75. 75.
    Jang, J.H., C.K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E.L. Thomas. 2007. 3D micro- and nanostructures via interference lithography. Advanced Functional Materials 17: 3027. doi: 10.1002/adfm.200700140.CrossRefGoogle Scholar
  76. 76.
    Cho, J.-D., H.-T. Ju, Y.-S. Park, and J.-W. Hong. 2006. Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-Negative photoresists with and without silica nanoparticles. Macromolecular Materials and Engineering 291: 1155–1163. doi: 10.1002/mame.200600124.CrossRefGoogle Scholar
  77. 77.
    Li, Xingwei, Xiang Li, and Gengchao Wang. 2006. Conducting poly-N-[5-(8 quinolinol)ylmethyl]aniline/nano-SiO2 composite with fluorescence. Materials Letters 60: 3342–3345. doi: 10.1016/j.matlet.2006.03.085.CrossRefGoogle Scholar
  78. 78.
    Liu, Y.L., C.Y. Hsu, Y.H. Su, and J.Y. Lai. 2005. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules 6: 368–373. doi: 10.1021/bm049531w.CrossRefGoogle Scholar
  79. 79.
    Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi: 10.1016/j.polymer.2005.07.081.CrossRefGoogle Scholar
  80. 80.
    Cho, Y.K., E.J. Park, and Y.D. Kim. 2014. Removal of oil by gelation using hydrophobic silica nanoparticles. Journal of Industrial and Engineering Chemistry 20: 1231. doi: 10.1016/j.jiec.2013.08.005.CrossRefGoogle Scholar
  81. 81.
    Nguyen, S.T., J. Feng, S.K. Ng, J.P.W. Wong, V.B.C. Tan, and H.M. Duong. 2014. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 445: 128. doi: 10.1016/j.colsurfa.2014.01.015.CrossRefGoogle Scholar
  82. 82.
    Battaglin, G., E. Cattaruzza, F. Gonella, R. Polloni, B.F. Scremin, G. Mattei, P. Mazzoldi, and C. Sada. 2004. Structural and optical properties of Cu: Silica nanocomposite films prepared by co-sputtering deposition. Applied Surface Science 226: 52–56. doi: 10.1016/j.apsusc.2003.11.030.CrossRefGoogle Scholar
  83. 83.
    Chang, C.C., and W.C. Chen. 2002. Synthesis and optical properties of polyimide-silica hybrid thin films. Chemistry of Materials 14: 4242–4248. doi: 10.1021/cm0202310.CrossRefGoogle Scholar
  84. 84.
    Yu, Y.Y., and W.C. Chen. 2003. Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Materials Chemistry and Physics 82: 388–395. doi: 10.1016/S0254-0584(03),00259-1.CrossRefGoogle Scholar
  85. 85.
    Jang, J., J. Ha, and B. Lim. 2006. Synthesis and characterization of monodisperse silica–polyaniline core–shell nanoparticles. Chemical Communications 1622–1624.Google Scholar
  86. 86.
    Hsiao, M.H., T.H. Tung, C.S. Hsiao, and D. Liu. 2012. Nano-hybrid carboxymethyl-hexanoyl CS modified with (3-Aminopropyl) triethoxysilane for camptothecin delivery. Carbohydrate Polymers 89: 632–639. doi: 10.1016/j.carbpol.2012.03.066.CrossRefGoogle Scholar
  87. 87.
    Rangelova, N., L. Aleksandrov, T. Angelova, N. Georgieva, and R. Muller. 2014. Preparation and characterization of SiO2/CMC/Ag hybrids with antibacterial properties. Carbohydrate Polymers 101: 1166–1175. doi: 10.1016/j.carbpol.2013.10.041.CrossRefGoogle Scholar
  88. 88.
    Rangelova, N., N. Georgieva, K. Mileva, R. Yuryev, and R. Muller. 2012. Synthesis and antibacterial activity of SiO2-CMC-Ag hybrid materials prepared by sol-gel. Comptes Rendus de l’Academie Bulgare des Sciences 65: 1057–1064. doi: 10.1080/13102818.2014.944789.Google Scholar
  89. 89.
    Argyo, C., V. Cauda, H. Engelke, J. Radler, G. Bein, and T. Bein. 2012. Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chemistry-A European Journal 18: 428–432. doi: 10.1002/chem.201102926.CrossRefGoogle Scholar
  90. 90.
    Joanna, L., S. Magdalena, S. Michal, K. Mariusz, R. Marek, T. Waldemar, S. Agnieszka, K. Gabriela, and N. Maria. 2014. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic CS and coated with silica shell. Journal of Alloys and Compounds 586: 45–51. doi: 10.1016/j.jallcom.2013.10.039.CrossRefGoogle Scholar
  91. 91.
    Soloukhin, V.A., W. Posthumus, J.C.M. Brokken-Zijp, and J. Loos. 2002. With, mechanical properties of silica–(meth)acrylate hybrid coatings on polycarbonate substrate G. Polymer 43: 6169. doi: 10.1016/S0032-3861(02),00542-6.CrossRefGoogle Scholar
  92. 92.
    Bauer, F., and R. Mehnert. 2005. UV curable acrylate nanocomposites: Properties and applications. Journal of Polymer Research 12: 483. doi: 10.1007/s10965-005-4339-z.CrossRefGoogle Scholar
  93. 93.
    Bauer, F., H.J. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland, and R. Mehnert. 2003. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Progress in Organic Coatings 47: 147. doi: 10.1016/S0300-9440(03)00117-6.CrossRefGoogle Scholar
  94. 94.
    Tiarks, F., K. Landfester, and M. Antoinette. 2001. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17: 908–918. doi: 10.1021/la001276n.CrossRefGoogle Scholar
  95. 95.
    Su, Y.L. 2006. Preparation of polydiacetylene/silica nanocomposite for use as chemosensors. Reactive & Functional Polymers 66: 967. doi: 10.1016/j.reactfunctpolym.2006.01.021.CrossRefGoogle Scholar
  96. 96.
    Matsuhisaa, H., M. Tsuchiyaa, and Y. Hasebe. 2013. Protein and polysaccharide-composite sol–gel silicate film for an interference-free amperometric glucose biosensor. Colloids and Surfaces B 111: 523–529. doi: 10.1016/j.colsurfb.2013.06.046.CrossRefGoogle Scholar
  97. 97.
    Zhang, L.M., G.H. Wang, and Z. Xing. 2011. Polysaccharide-assisted incorporation of multiwalled into sol–gel for electrochemical sensing. Journal of Materials Chemistry 21: 4650–4656. doi: 10.1039/C0JM03031G.CrossRefGoogle Scholar
  98. 98.
    Lei, L., Z. Cao, Q. Xie, Y. Fu, Y. Tan, M. Ma, and S. Yao. 2011. One-pot electrodeposition of 3-aminopropyltriethoxysilane–CS hybrid gel film to immobilize glucose oxidase for biosensing. Sensors and Actuators, B: Chemical 157: 282–289. doi: 10.1016/j.snb.2011.03.063.CrossRefGoogle Scholar
  99. 99.
    Lee, H.U.K., Y.S. Song, Y.J. Suh, C. Park, and S.W. Kim. 2012. Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into CS bead. Journal of Molecular Catalysis B: Enzymatic 81: 31–36. doi: 10.1016/j.molcatb.2012.05.004.CrossRefGoogle Scholar
  100. 100.
    Liu, F., L.D. Carlos, R.A.S. Ferreira, J. Rocha, M.C. Ferro, A. Tourrette, F. Quignard, and M. Robitzer. 2010. Synthesis, texture, and photoluminescence of lanthanide-containing CS-silica hybrids. Journal of Physical Chemistry 114: 77–83. doi: 10.1021/jp908563d.CrossRefGoogle Scholar
  101. 101.
    Singh, V., and S. Ahmed. 2012. Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNP)-silica hybrid for amylase immobilization. Cellulose 19: 1759–1769. doi: 10.1007/s10570-012-9749-6.CrossRefGoogle Scholar
  102. 102.
    Singh, V., and S. Ahmed. 2012. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: An effective support for diastase immobilization. International Journal of Biological Macromolecules 50: 353–361. doi: 10.1016/j.ijbiomac.2011.12.017.CrossRefGoogle Scholar
  103. 103.
    Singh, V., and S. Ahmad. 2014. Carboxymethyl cellulose-gelatin-silica nanohybrid: An efficient carrier matrix for alpha amylase. International Journal of Biological Macromolecules 67: 439–445. doi: 10.1007/s10570-012-9749-6.CrossRefGoogle Scholar
  104. 104.
    Neoh, K.G., K.K. Tan, P.L. Goh, S.W. Huang, E.T. Kang, and K.L. Tan. 1999. Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 40: 887. doi: 10.1016/S0032-3861(98)00297-3.CrossRefGoogle Scholar
  105. 105.
    Su, Y.H., Y.L. Liu, Y.M. Sun, J.Y. Lai, M.D. Guiver, and Y. Gao. 2006. Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. Journal of Power Sources 155: 111. doi: 10.1016/j.jpowsour.2005.03.233.CrossRefGoogle Scholar
  106. 106.
    Saxena, A., B.P. Tripathi, and V.K. Shahi. 2007. Sulfonated Poly (styrene-co-maleic anhydride)–poly(ethylene glycol)–silica nanocomposite polyelectrolyte membranes for fuel cell applications. The Journal of Physical Chemistry B 111: 2454–12461. doi: 10.1021/jp072244c.CrossRefGoogle Scholar
  107. 107.
    Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi: 10.1016/j.polymer.2005.07.081.CrossRefGoogle Scholar
  108. 108.
    Chang, K.C., C.H. Hsu, C.W. Peng, Y.Y. Huang, J.M. Yeh, H.P. Wan, and W.C. Hung. 2014. Preparation and comparative properties of membranes based on PANI and three inorganic fillers. Express Polymer Letters 8: 207–218. doi: 10.3144/expresspolymlett.2014.24.CrossRefGoogle Scholar
  109. 109.
    Obradović, V., D.B. Stojanović, R. Jančić-Heinemann, I. Živković, V. Radojević, P.S. Uskoković, and R. Aleksić. 2014. Ballistic properties of hybrid thermoplastic composites with silica nanoparticles. Journal of Engineered Fibers and Fabrics 9: 97–107.Google Scholar
  110. 110.
    Ribeiro, T., C. Baleizão, and J.P.S. Farinh. 2014. Functional films from silica/polymer nanoparticles. Materials 7: 3881. doi: 10.3390/ma7053881.CrossRefGoogle Scholar
  111. 111.
    Bhowmick, A.K., and H. Stephens. 2000. Handbook of elastomers. 2nd ed, 610. CRC Press.Google Scholar
  112. 112.
    Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi: 10.1016/j.jiec.2014.02.005.CrossRefGoogle Scholar
  113. 113.
    Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi: 10.1002/app.39973.Google Scholar
  114. 114.
    Rezaei, F., R.P. Lively, Y. Labreche, G. Chen, Y. Fan, W.J. Koros, and C.W. Jones. 2013. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Applied Materials & Interfaces 5: 3921. doi: 10.1021/am400636c.CrossRefGoogle Scholar
  115. 115.
    Su, S., B. Chen, M. He, and B. Hu. 2014. Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123: 1–9. doi: 10.1016/j.talanta.2014.01.061.CrossRefGoogle Scholar
  116. 116.
    Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi: 10.1016/j.jenvman.2012.05.031.CrossRefGoogle Scholar
  117. 117.
    Chang, C.C., K.C. Wang, C.C. Chen, and L.P. Cheng. 2014. Preparation and characterization of silica/polymer antifogging coatings. Polymers & Polymer Composites 22: 39–44.Google Scholar
  118. 118.
    Yoshinaga, K., Y. Yang, T. Ohno, S. Motokucho, and K. Kojio. 2014. Inclusion of fullerene in polymer chains grafted on silica nanoparticles in an organic solvent. Polymer Journal 46: 623–627. doi: 10.1038/pj.2014.24.CrossRefGoogle Scholar
  119. 119.
    Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell Nanoscale Res. Letters 10: 82. doi: 10.1186/s11671-015-0808-4.Google Scholar
  120. 120.
    Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi: 10.1080/09205063.2015.1012035.CrossRefGoogle Scholar
  121. 121.
    Samart, C., P. Prawingwong, S. Amnuaypanich, H. Zhang, K. Kajiyoshi, and P. Reubroycharoen. 2014. Preparation of poly acrylic acid grafted mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry 20: 2153–2158. doi: 10.1016/j.jiec.2013.09.045.CrossRefGoogle Scholar
  122. 122.
    McInnes, Steven J.P., Y. Irani, K.A. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 7: 995–1016. doi: 10.2217/nnm.11.176.CrossRefGoogle Scholar
  123. 123.
    Gonon, P., A. Sylvestre, J. Teysseyre, and C. Prior. 2001. Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing. Journal Materials Science 12: 81. doi: 10.1023/A:1011241818209.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryBanasthali UniversityVanasthaliIndia
  2. 2.School of Chemical ScienceCentral University of GujaratGandhinagarIndia

Personalised recommendations