Advertisement

Chitosan-Based Natural Biosorbents: Novel Search for Water and Wastewater Desalination and Heavy Metal Detoxification

  • Ankita Dhillon
  • Dinesh KumarEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Due to worldwide increasing population, the people may face increasing freshwater scarcity globally. Further, groundwater contamination by health hazardous toxicants like fluoride, arsenic, nitrate, phosphate, mercury, heavy metals, and many more is likewise increasing. Therefore, a number of low-cost and fast water and wastewater treatment methods are being utilized at the present time. A great amount of research has been accomplished to discover efficient water purification methods at lower cost as well as minimum utilization of chemicals and negligible impact on the environment. Hence utilization of chitosan-based natural biosorbents in water and wastewater treatment is a fast-emergent field of interest to environmental consultants and public interest groups. This chapter covers an assortment of chitosan-based natural biosorbents in the field of water remediation. Herein, we include the synthesis of new materials, modification of natural chitosan materials and their utilization for water purification.

Keywords

Chitosan Detoxification Desalination Wastewater 

Notes

Acknowledgements

We gratefully acknowledge support from the Ministry of Human Resource Development Department of Higher Education, Government of India, under the scheme of Establishment of Centre of Excellence for Training and Research in Frontier Areas of Science and Technology (FAST), for providing the necessary financial support to carry out this study vide letter No, F. No. 5–5/201 4–TS.Vll.

References

  1. 1.
    Water, L.G.A., W.L. Driessen, M.W. Glenny, J. Reedijk, and M. Schroader. 2002. Selective and reversible extraction of heavy metal-ions by mixed-donor crown ether-modified oxirane and thiirane resins. Reactive & Functional Polymers 51: 33–47.CrossRefGoogle Scholar
  2. 2.
    Ramos, V.M., N.M. Rodrıguez, M.S. Rodrıguez, A. Heras, and E. Agullo. 2003. Modified chitosan carrying phosphonic and alkyl groups. Carbohydrate Polymers 51: 425–429.CrossRefGoogle Scholar
  3. 3.
    Kumar, M.N.V.R. 2000. A review of chitin and chitosan applications. Reactive & Functional Polymers 46: 1–27.CrossRefGoogle Scholar
  4. 4.
    Sashiwa, H., and S. Aiba. 2004. Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science 29: 887–908.CrossRefGoogle Scholar
  5. 5.
    Miyazaki, S., K. Ishii, and T. Nadai. 1981. The use of chitin and chitosan as drug carriers. Chemical & Pharmaceutical Bulletin 29: 3067–3069.CrossRefGoogle Scholar
  6. 6.
    Chang, Y.-C., S.-W. Chang, and D.-H. Chen. 2006. Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. Reactive & Functional Polymers 66: 335–341.CrossRefGoogle Scholar
  7. 7.
    Hsien, T.-Y., and G.L. Rorrer. 1995. Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Separation Science and Technology 30: 2455–2475.CrossRefGoogle Scholar
  8. 8.
    Li, N., and R. Bai. 2005. Copper adsorption on chitosan-cellulose hydrogel beads: Behaviors and mechanisms. Separation and Purification Technology 42: 237–247.CrossRefGoogle Scholar
  9. 9.
    Guibal, E. 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 38: 43–74.CrossRefGoogle Scholar
  10. 10.
    Kurita, K., T. Sannan, and Y. Iwakura. 1979. Studies on chitin. VI. Binding of metal cations. Journal of Applied Polymer Science 23: 511–515.Google Scholar
  11. 11.
    Chaterjee, S., T. Chaterjee, and S.H. Woo. 2010. A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresource Technology 101: 3853–3858.CrossRefGoogle Scholar
  12. 12.
    Zhi, J., Y. Wang, and G. Luo. 2005. Adsorption of diuretic furosemide onto chitosan nanoparticles prepared with a water-in-oil nanoemulsion system. Reactive & Functional Polymers 65: 249–257.CrossRefGoogle Scholar
  13. 13.
    Haider, S., and S.Y. Park. 2009. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science 328: 90–96.CrossRefGoogle Scholar
  14. 14.
    Vieira, R., and M. Beppu. 2005. Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption 11: 731–736.CrossRefGoogle Scholar
  15. 15.
    Davila–Rodriguez, J.L., V.A. Escobar–Barrios, K. Shirai, and J.R. Rangel–Mendez. 2009. Synthesis of a chitin-based biocomposite for water treatment: Optimization for fluoride removal. Journal of fluorine Chemistry 130: 718–726.Google Scholar
  16. 16.
    Kamble, S.P., S. Jagtap, N.K. Labhsetwar, D. Thakare, S. Godfrey, S. Devotta, and S.S. Rayalu. 2007. Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chemical Engineering Journal 129: 173–180.CrossRefGoogle Scholar
  17. 17.
    Sundaram, C.S., N. Viswanathan, and S. Meenakshi. 2008. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresource Technology 99: 8226–8230.CrossRefGoogle Scholar
  18. 18.
    Sundaram, C.S., N. Viswanathan, and S. Meenakshi. 2009. Fluoride sorption by nano-hydroxyapatite/chitin composite. Journal of Hazardous Materials 172: 147–151.CrossRefGoogle Scholar
  19. 19.
    Sundaram, C.S., N. Viswanathan, and S. Meenakshi. 2009. Defluoridation of water using magnesia/chitosan composite. Journal of Hazardous Materials 163: 618–624.CrossRefGoogle Scholar
  20. 20.
    Jagtap, S., D. Thakre, S. Wanjari, S. Kamble, N. Labhsetwar, and S. Rayalu. 2009. New modified chitosan-based adsorbent for defluoridation of water. Journal of Colloid and Interface Science 332: 280–290.CrossRefGoogle Scholar
  21. 21.
    Swain, S.K., R.K. Dey, M. Islam, R.K. Patel, U. Jha, T. Patnaik, and C. Airoldi. 2009. Removal of fluoride from aqueous solution using aluminum-impregnated chitosan biopolymer. Separation Science and Technology 44: 2096–2116.CrossRefGoogle Scholar
  22. 22.
    Thakre, D., S. Jagtap, A. Bansiwal, N. Labhsetwar, and S. Rayalu. 2010. Synthesis of La-incorporated chitosan beads for fluoride removal from water. Journal of Fluorine Chemistry 13: 373–377.CrossRefGoogle Scholar
  23. 23.
    Thakre, D., S. Jagtap, A. Bansiwal, N. Labhsetwar, and S. Rayalu. 2010. Chitosan based mesoporous Ti–Al binary metal oxide supported beads for defluoridation of water. Chemical Engineering Journal 158: 315–324.Google Scholar
  24. 24.
    Viswanathan, N., and S. Meenakshi. 2008. Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. Journal of Fluorine Chemistry 129: 503–509.CrossRefGoogle Scholar
  25. 25.
    Viswanathan, N., and S. Meenakshi. 2008. Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. Journal of Colloid and Interface Science 322: 375–383.CrossRefGoogle Scholar
  26. 26.
    Viswanathan, N., and S. Meenakshi. 2009. Synthesis of Zr(IV) entrapped chitosan polymeric matrix for selective fluoride sorption. Colloids and Surfaces B72: 88–93.CrossRefGoogle Scholar
  27. 27.
    Viswanathan, N., and S. Meenakshi. 2009. Enhanced and Selective Fluoride Sorption on Ce(III) Encapsulated Chitosan Polymeric Matrix. Journal of Applied Polymer Science 112: 1114–1121.CrossRefGoogle Scholar
  28. 28.
    Viswanathan, N., and S. Meenakshi. 2010. Development of chitosan supported zirconium(IV) tungstophosphate composite for fluoride removal. Journal of Hazardous Materials 176: 459–465.CrossRefGoogle Scholar
  29. 29.
    Viswanathan, N., and S. Meenakshi. 2010. Selective fluoride adsorption by a hydrotalcite/chitosan composite. Applied Clay Science 48: 607–611.CrossRefGoogle Scholar
  30. 30.
    Viswanathan, N., and S. Meenakshi. 2010. Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials 178: 226–232.CrossRefGoogle Scholar
  31. 31.
    Sorlier, P., A. Denuziere, C. Viton, and A. Domard. 2001. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2: 765–772.CrossRefGoogle Scholar
  32. 32.
    Yui, T., K. Imada, K. Okuyama, Y. Obata, K. Suzuki, and K. Ogawa. 1994. Molecular and crystal-structure of the anhydrous form of chitosan. Macromolecules 27: 7601–7605.CrossRefGoogle Scholar
  33. 33.
    Rinaudo, M. 2006. Characterization and properties of some polysaccharides used as biomaterials. Macromolecular Symposia 245–246: 549–557.CrossRefGoogle Scholar
  34. 34.
    Crini, G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science 30: 38–70.CrossRefGoogle Scholar
  35. 35.
    Kurita, K. 2006. Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine Biotechnology 8: 203–226.CrossRefGoogle Scholar
  36. 36.
    Hsien, T.-Y., and G.L. Rorrer. 1995. Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Separation Science and Technology 30: 2455–2475.CrossRefGoogle Scholar
  37. 37.
    Huang, R., G. Chen, M. Sun, and C. Gao. 2008. Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking. Separation and Purification Technology 58: 393–399.CrossRefGoogle Scholar
  38. 38.
    Juang, R.S., and R.C. Shiau. 2000. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science 165: 159–167.CrossRefGoogle Scholar
  39. 39.
    EL-Gendi, A., A. Deratani, S. A. Ahmed, and S. S. Ali. 2014. Development of polyamide-6/chitosan membranes for desalination. Egyptian Journal of Petroleum 23: 169–173.Google Scholar
  40. 40.
    Raval, H.D., P.S. Rana, and S. Maiti. 2015. A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment. RSC Advances 5: 6687–6694.CrossRefGoogle Scholar
  41. 41.
    Li, J., Y. Xu, M. Hu, J. Shen, C. Gao, and B.V.D. Bruggen. 2015. Enhanced conductivity of monovalent cation exchange membranes with chitosan/pani composite modification. RSC Advances 5: 90969–90975.CrossRefGoogle Scholar
  42. 42.
    Padaki, M., A.M. Isloor, J. Fernandes, and K.N. Prabhu. 2011. New polypropylene supported chitosan NF-membrane for desalination application. Desalination 280: 419–423.CrossRefGoogle Scholar
  43. 43.
    Kumar, R., A.M. Isloor, A.F. Ismail, S.A. Rashid, and T. Matsuura. 2013. Polysulfone–chitosan blend ultrafiltration membranes: Preparation, characterization, permeation and antifouling properties. RSC Advances 3: 7855–7861.CrossRefGoogle Scholar
  44. 44.
    Ayoub, A., R.A. Venditti, J.J. Pawlak, A. Salam, and M.A. Hubbe. 2013. Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal. ACS Sustainable Chemistry & Engineering 1: 1102–1109.CrossRefGoogle Scholar
  45. 45.
    Chen, Y., L. Chen, H. Bai, and L. Li. 2013. Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. Journal of Materials Chemistry A 1: 1992–2001.CrossRefGoogle Scholar
  46. 46.
    Sorour, M.H., H.A. Hani, H.F. Shaalan, M.M. El-Sayed, and M.M.H. El-Sayed. 2015. Softening of seawater and desalination brines using grafted polysaccharide hydrogels. Desalination and Water Treatment 55: 2389–2397.CrossRefGoogle Scholar
  47. 47.
    Arvand, M., and M.A. Pakseresht. 2013. Cadmium adsorption on modified chitosan-coated bentonite: Batch experimental studies. Journal of Chemical Technology and Biotechnology 88: 572–578.CrossRefGoogle Scholar
  48. 48.
    Chen, J.H., D.Q. Lu, B. Chen, and P.K. Ouyang. 2013. Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. Journal of Radioanalytical and Nuclear Chemistry 295: 2233–2241.CrossRefGoogle Scholar
  49. 49.
    Chen, Y., and J. Wang. 2012. The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan. Nuclear Engineering and Design 242: 452–457.CrossRefGoogle Scholar
  50. 50.
    Debnath, S., A. Maity, and K. Pillay. 2014. Magnetic chitosan–GO nanocomposite: Synthesis, characterization and batch adsorber design for Cr(VI) removal. Journal of Environmental Chemical Engineering 2: 963–973.CrossRefGoogle Scholar
  51. 51.
    Hummers, W.S., and R.E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80: 1339.CrossRefGoogle Scholar
  52. 52.
    Elwakeel, K.Z., A.A. Atia, and E. Guibal. 2014. Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresource Technology 160: 107–114.CrossRefGoogle Scholar
  53. 53.
    Eser, A., V. NüketTirtom, T. Aydemir, S. Becerik, and A. Dinçer. 2012. Removal of nickel(II) ions by histidine modified chitosan beads. Chemical Engineering Journal 210: 590–596.Google Scholar
  54. 54.
    Gandhi, M.R., G.N. Kousalya, and S. Meenakshi. 2012. Selective sorption of Fe(III) using modified forms of chitosan beads. Journal of Applied Polymer Science 24: 1858–1865.CrossRefGoogle Scholar
  55. 55.
    Kandile, N.G., and A.S. Nasr. 2014. New hydrogels based on modified chitosan as metal biosorbent agents. International Journal of Biological Macromolecules 64: 328–333.CrossRefGoogle Scholar
  56. 56.
    Li, T.T., Y.G. Liu, Q.Q. Peng, X.J. Hu, T. Liao, H. Wang, and M. Lu. 2013. Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chemical Engineering Journal 214: 189–197.Google Scholar
  57. 57.
    Li, M.L., R.H. Li, J. Xu, X. Han, T.Y. Yao, and J. Wang. 2014. Thiocarbohydrazide-modified chitosan as anticorrosion and metal ion adsorbent. Journal of Applied Polymer Science 131: 8437–8443.Google Scholar
  58. 58.
    Li, M., J. Xu, R. Li, D. Wang, T. Li, M. Yuan, and J. Wang. 2014. Simple preparation of aminothiourea-modified chitosan as corrosion inhibitor and heavy metal ion adsorbent. Journal of Colloid and Interface Science 417: 131–136.CrossRefGoogle Scholar
  59. 59.
    Monier, M. 2012. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde schiff’s base. International Journal of Biological Macromolecules 50: 773–781.CrossRefGoogle Scholar
  60. 60.
    Negm, N.A., R. Sheikh, A.F. El–Farargy, H.H.H. Hefni, and M. Bekhit. 2015. Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. Journal of Industrial and Engineering Chemistry 21: 526–534.CrossRefGoogle Scholar
  61. 61.
    Rabelo, R., R. Vieira, F. Luna, E. Guibal, and M. Beppu. 2012. Adsorption of copper (II) and mercury (II) ions onto chemically-modified chitosan membranes: equilibrium and kinetic properties. Adsorption Science & Technology 30: 1–21.CrossRefGoogle Scholar
  62. 62.
    Gandhi, M.R., and S. Meenakshi. 2013. Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies. Carbohydrate Polymers 91: 631–637.CrossRefGoogle Scholar
  63. 63.
    Repo, E., R. Koivula, R. Harjula, and M. Sillanpää. 2013. Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan. Desalination 321: 93–102.CrossRefGoogle Scholar
  64. 64.
    Song, Q., C. Wang, Z. Zhang, and J. Gao. 2014. Adsorption of Cu(II) and Ni(II) using a novel xanthated carboxymethyl chitosan. Separation Science and Technology 49: 1235–1243.CrossRefGoogle Scholar
  65. 65.
    Kumar, A.S.K., C.U. Kumar, V. Rajesh, and N. Rajesh. 2014. Microwave assisted preparation of N-Butylacrylate grafted chitosan and its application for Cr(VI) adsorption. International Journal of Biological Macromolecules 66: 135–143.CrossRefGoogle Scholar
  66. 66.
    Suc, N.V., and H.T.Y. Ly. 2013. Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde. Journal of Chemical Technology and Biotechnology 88: 1641–1649.CrossRefGoogle Scholar
  67. 67.
    Wang, H., H. Tang, Z. Liu, X. Zhang, Z. Hao, and Z. Liu. 2014. Removal of cobalt(II) ion from aqueous solution by chitosan-montmorillonite. Journal of Environmental Sciences 26: 1879–1884.CrossRefGoogle Scholar
  68. 68.
    Xu, J., L. Zhou, Y. Jia, Z. Liu, and A.A. Adesina. 2014. Adsorption of thorium (IV) ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine. Journal of Radioanalytical and Nuclear Chemistry 303: 347–356.CrossRefGoogle Scholar
  69. 69.
    Xu, J., M. Chen, C. Zhang, and Z. Yi. 2014. Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. Journal of Radioanalytical and Nuclear Chemistry 2013 (298): 1375–1383.Google Scholar
  70. 70.
    Yang, G., L. Tang, X. Lei, G. Zeng, Y. Cai, X. Wei, Y. Zhou, S. Li, Y. Fang, and Y. Zhang. 2014. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied Surface Science 292: 710–716.CrossRefGoogle Scholar
  71. 71.
    Kyzas, G.Z., and E.A. Deliyanni. 2013. Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18: 6193–6214.CrossRefGoogle Scholar
  72. 72.
    Kyzas, G.Z., P.I. Siafaka, D.A. Lambropoulou, N.K. Lazaridis, and D.N. Bikiaris. 2014. Poly (Itaconic Acid)-grafted chitosan adsorbents with different cross-linking for Pb (II) and Cd (II) uptake. Langmuir 40: 120–131.CrossRefGoogle Scholar
  73. 73.
    Verbych, S., M. Bryk, G. Chornokur, and B. Fuhr. 2005. Removal of copper(II) from aqueous solutions by chitosan adsorption. Separation Science and Technology 40: 1749–1759.CrossRefGoogle Scholar
  74. 74.
    Mcafee, B.J., W.D. Gould, J.C. Nadeau, and A.C.A.D. Costa. 2001. Biosorption of metal ions using chitosan, chitin, and biomass of rhizopus oryzae. Separation Science and Technology 36: 3207–3222.CrossRefGoogle Scholar
  75. 75.
    Jeon, C., and W.H. Höll. 2003. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research 37: 4770–4780.CrossRefGoogle Scholar
  76. 76.
    Miretzky, P., and A.F. Cirelli. 2009. Hg(II) removal from water by chitosan and chitosan derivatives: A review. Journal of Hazardous Materials 167: 10–23.CrossRefGoogle Scholar
  77. 77.
    Kalyani, S., J.A. Priya, P.S. Rao, and A. Krishnaiah. 2005. Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Separation Science and Technology 40: 1483–1495.CrossRefGoogle Scholar
  78. 78.
    Paulino, A.T., L.B. Santos, and J. Nozaki. 2008. Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low-cost adsorbent. Reactive & Functional Polymers 68: 634–642.CrossRefGoogle Scholar
  79. 79.
    Krishnapriya, K.R., and M. Kandaswamy. 2009. Synthesis and characterization of a crosslinked chitosan derivative with a complexing agent and its adsorption studies toward metal(II) ions. Carbohydrate Research 344: 1632–1638.CrossRefGoogle Scholar
  80. 80.
    Popuri, S.R., Y. Vijaya, V.M. Boddu, and K. Abburi. 2009. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology 100: 194–199.CrossRefGoogle Scholar
  81. 81.
    Liu, X., Q. Hu, Z. Fang, X. Zhang, and B. Zhang. 2009. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 25: 3–8.CrossRefGoogle Scholar
  82. 82.
    Septhum, C., S. Rattanaphani, J.B. Bremner, and V. Rattanaphani. 2007. An adsorption study of Al(III) ions onto chitosan. Journal of Hazardous Materials 148: 185–191.CrossRefGoogle Scholar
  83. 83.
    Guzman, J., I. Saucedo, R. Navarro, J. Revilla, and E. Guibal. 2002. Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18: 1567–1573.CrossRefGoogle Scholar
  84. 84.
    Dambies, L., E. Guibal, and A. Roze. 2000. Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloid Surface A 170: 19–31.CrossRefGoogle Scholar
  85. 85.
    Chen, C.-C., and Y.-C. Chung. 2006. Arsenic removal using a biopolymer chitosan sorbent. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering 41: 645–658.CrossRefGoogle Scholar
  86. 86.
    Kwok, K.C.M., V.K.C. Lee, C. Gerente, and G. McKay. 2009. Novel model development for sorption of arsenate on chitosan. Chemical Engineering Journal 151: 122–133.CrossRefGoogle Scholar
  87. 87.
    Gupta, A., V.S. Chauhan, and N. Sankararamakrishnan. 2009. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Research 43: 3862–3870.CrossRefGoogle Scholar
  88. 88.
    Aydın, Y.A., and N.D. Aksoy. 2009. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal 51: 188–194.CrossRefGoogle Scholar
  89. 89.
    Hasan, S., A. Krishnaiah, T.K. Ghosh, D.S. Viswanath, V.M. Boddu, and E.D. Smith. 2003. Adsorption of Chromium(VI) on Chitosan-Coated Perlite. Separation Science and Technology 38: 3775–3793.CrossRefGoogle Scholar
  90. 90.
    Boddu, V.M., K. Abburi, J.L. Talbott, and E.D. Smith. 2003. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science and Technology 37: 4449–4456.CrossRefGoogle Scholar
  91. 91.
    Spinelli, V.A., M.C.M. Laranjeira, and V.T. Fávere. 2004. Preparation and characterization of quaternary chitosan salt: Adsorption equilibrium of chromium(VI) ion. Reactive & Functional Polymers 61: 347–352.CrossRefGoogle Scholar
  92. 92.
    Rojas, G., J. Silva, J.A. Flores, A. Rodriguez, M. Ly, and M. Maldonado. 2005. Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology 44: 31–36.CrossRefGoogle Scholar
  93. 93.
    Geng, B., Z. Jin, T. Li, and X. Qi. 2009. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75: 825–830.CrossRefGoogle Scholar
  94. 94.
    Jha, I.N., L. Iyengar, and A.V.S.P. Rao. 1988. Removal of cadmium using chitosan. Journal of Environmental Engineering 114: 964–974.CrossRefGoogle Scholar
  95. 95.
    McKay, G., H.S. Blair, and A. Findon. 1989. Equilibrium studies for the sorption of metal-ions onto chitosan. Indian Journal of Chemistry A 28: 356–360.Google Scholar
  96. 96.
    Rorrer, G.L., T.-Y. Hsien, and J.D. Way. 1993. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Industrial and Engineering Chemistry Research 32: 2170–2178.CrossRefGoogle Scholar
  97. 97.
    Schmuhl, R., H.M. Krieg, K. Keizer. 2001. Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies. Water SA 27: 1–8.Google Scholar
  98. 98.
    Guibal, E., C. Milot, and J.M. Tobin. 1998. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial and Engineering Chemistry Research 37: 1454–1463.CrossRefGoogle Scholar
  99. 99.
    Yan, Z., S. Haijia, and T. Tianwei. 2007. Adsorption Behaviors of the aminated chitosan adsorbent. Korean Journal of Chemical Engineering 24: 1047–1052.CrossRefGoogle Scholar
  100. 100.
    Wang, G., J. Liu, X. Wang, Z. Xie, and N. Deng. 2009. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials 168: 1053–1058.CrossRefGoogle Scholar
  101. 101.
    Lasko, C.L., and M.P. Hurst. 1999. An investigation into the use of chitosan for the removal of soluble silver from industrial wastewater. Environmental Science and Technology 33: 3622–3626.CrossRefGoogle Scholar
  102. 102.
    Ngah, W.S.W., and K.H. Liang. 1999. Adsorption of gold (III) ions onto chitosan and N-Carboxymethyl chitosan: Equilibrium studies. Industrial and Engineering Chemistry Research 38: 1411–1414.CrossRefGoogle Scholar
  103. 103.
    Metwally, E., S.S. Elkholy, H.A.M. Salem, and M.Z. Elsabee. 2009. Sorption behavior of 60Co and 152+ 154 Eu radionuclides onto chitosan derivatives. Carbohydrate Polymers 76: 622–631.CrossRefGoogle Scholar
  104. 104.
    Zhou, L., J. Liu, and Z. Liu. 2009. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials 172: 439–446.CrossRefGoogle Scholar
  105. 105.
    Gerente, C., V.K.C. Lee, P.L. Cloirec, and G. McKay. 2007. Application of chitosan for the removal of metals from wastewaters by adsorption—Mechanisms and models review. Critical Reviews in Environment Science and Technology 37: 41–127.CrossRefGoogle Scholar
  106. 106.
    Crini, G., and P.-M. Badot. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science 33: 399–447.CrossRefGoogle Scholar
  107. 107.
    Guibal, E. 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 38: 43–74.CrossRefGoogle Scholar
  108. 108.
    Varma, A.J., S.V. Deshpande, and J.F. Kennedy. 2004. Metal complexation by chitosan and its derivatives: A review. Carbohydrate Polymers 55: 77–93.CrossRefGoogle Scholar
  109. 109.
    Kyzas, G.Z., M. Kostoglou, and N.K. Lazaridis. 2009. Copper and chromium(VI) removal by chitosan derivatives—Equilibrium and kinetic studies. Chemical Engineering Journal 152: 440–448.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryBanasthali UniversityTonkIndia
  2. 2.School of Chemical SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations