Advertisement

Alginate-Based Nanosorbents for Water Remediation

  • A. K. BajpaiEmail author
  • Priyanka Agrawal
  • Sunil K. Singh
  • Priyanka Singh
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The present chapter highlights the major concepts of the extraction, preparation, properties, and applications of brown algal mass. In recent years, brown marine weeds have been investigated as the most effective and promising substrates in water treatments. Thus, being motivated by the massive applications of algal masses, the authors have selected the alginate biopolymer as biosorbent and discussed its potential role in biosorption studies. Herein, we have described the nanocomposites of the seaweed alginate and its derivatives in water remediation. The sorption behavior of alginate and derivatives with various toxic heavy metals as well as radioactive elements is summarized, and their relative performance has been examined. The innovation in creation of synthetic derivatives has the potential to empower the next generation of applications for alginates. Further, the global market reports have emphasized on the upcoming continuous research innovation of marine brown seaweed in wastewater treatments in particularly the Asia-Pacific region.

Keywords

Alginate Nanosrobent Toxic metal ions Remediation 

References

  1. 1.
    Abhishek, L., A. Karthik R, D.K. Kumar, and G. Sivakumar. 2014. The International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) 3: 17130–17138.Google Scholar
  2. 2.
    Namasivayam. C. 1995. Edited by R.K. Trivedy, Encyclopedia of environmental pollution and control. Enviro Media 1: 30–49.Google Scholar
  3. 3.
    Schwarzenbach, R.P., B.I. Escher, K. Fenner, T.B. Hofstetter, U. von Gunter, C.A. Johnson, and B. Wehrli. 2006. Science 313: 1072–1077.Google Scholar
  4. 4.
    Tripathi, A., and M.R. Ranjan. 2015. Journal of Bioremediation & Biodegradation 6: 1–5.CrossRefGoogle Scholar
  5. 5.
    Reife, A., and H.S. Freeman. 1996. Environmental Chemistry of Dyes and Pigments. New York: Wiley.Google Scholar
  6. 6.
    Lenntech. 2004. Water Treatment and Air Purification. Published by Lenntech, Rotterdam seweg, Netherlands www.excelwater.com/thp/filters/Water.Purification.htm.
  7. 7.
    Ahmed, R.A., and A.M. Fekry. 2013. International Journal of Electrochemical Science 8: 6692–6708.Google Scholar
  8. 8.
    Khlifi, R., and A. Hamza-Chaffai. 2010. Toxicology and Applied Pharmacology 1571–1588.Google Scholar
  9. 9.
    Duran, C., A. Gundogdu, V.N. Bulut, M. Soylak, L. Elci, H.B. Senturk, and M. Tufekci. 2007. Journal of Hazardous Materials 146: 347–355.CrossRefGoogle Scholar
  10. 10.
    Chen, C.W., C.F. Chen, and C.D. Dong. 2012. International Journal of Geomate 6: 892–896.Google Scholar
  11. 11.
    Smith, A.H., E.O. Lingas, and R. Mahfuzar. 2000. Bulletin of the World Health Organization 78: 1093–1103.Google Scholar
  12. 12.
    Borba, C.E., R. Guirardello, E.A. Silva, M.T. Veit, and C.R.G. Tavares. 2006. Biochemical Engineering Journal 30: 184–191.CrossRefGoogle Scholar
  13. 13.
    Matschullat, J. 2000. Science of the Total Environment 249: 297–312.CrossRefGoogle Scholar
  14. 14.
    Huang, X., M. Sillanpä, E.T. Gjessing, S. Peräniemi, and R.D. Vogt. 2011. River Research and Applications 27: 113–121.CrossRefGoogle Scholar
  15. 15.
    Kurniawan, T.A., et al. 2006. Chemical Engineering Journal 118: 83–98.CrossRefGoogle Scholar
  16. 16.
    Kwon, J.S., S.T. Yun, J.H. Lee, S.O. Kim, and H.Y. Jo. 2010. Journal of Hazardous Materials 174: 307–313.CrossRefGoogle Scholar
  17. 17.
    Gottipati, R., and S. Mishra Susmita. 2012. Research Journal of Chemical Sciences 2: 40–48.Google Scholar
  18. 18.
    FuWei, Y., Z. BingJian, P. ChangChu, and Z. YuYao. 2009. Environmental Technological Sciences 52: 1641–1647.CrossRefGoogle Scholar
  19. 19.
    Rhim, J.W., H.M. Park, and C.S. Ha. 2013. Progress in Polymer Science 38: 1629–1652.CrossRefGoogle Scholar
  20. 20.
    Kalia, S., and L. Averous. 2011. Biopolymers: Biomedical and environmental applications. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  21. 21.
    Saha, D., and S. Bhattacharya. 2010. Journal of Food Science and Technology 47: 587–597.CrossRefGoogle Scholar
  22. 22.
    Lorenzo, G., N. Zaritzky, and A. Califano. 2012. Food Hydrocolloids 30: 672–680.CrossRefGoogle Scholar
  23. 23.
    Wen, S.S.Y., M.L. Rahman, S.E. Arshad, N.L. Surugau, and B. Musta. 2013. Journal of Applied Polymer Science 124: 4443–4453.Google Scholar
  24. 24.
    Guo, L., S.F. Zhang, B.Z. Ju, and J.Z. Yang. 2006. Carbohydrate Polymers 63 (4): 487–492.CrossRefGoogle Scholar
  25. 25.
    Ahmed, S.A. 2011. Carbohydrate Polymers 83 (1470): 1478.Google Scholar
  26. 26.
    Zhao, G., X. Wu, X. Tan, and X. Wang. 2011. The Open Colloid Science Journal 4: 19–31.CrossRefGoogle Scholar
  27. 27.
    Kavianinia, I., P.G. Plieger, N.G. Kandile, and D.R.K. Harding. 2012. Carbohydrate Polymers 87: 881–893.CrossRefGoogle Scholar
  28. 28.
    Davis, T.A., B. Volesky, and A. Mucci. 2003. Water Research 37: 4311–4330.CrossRefGoogle Scholar
  29. 29.
    Gupta, V.K., and A. Rastogi. 2008. Colloids Surf B Biointerfaces 64:170–178.Google Scholar
  30. 30.
    Robitzer, M., and F. Quignard. 2011. International Journal of Chemistry 65: 81–84.Google Scholar
  31. 31.
    Norton, I.T., W. Frith, and S. Ablett. 2006. Food Hydrocolloids 20: 229–239.CrossRefGoogle Scholar
  32. 32.
    Frampton, J.P., M.R. Hynd, M.L. Shuler and W. Shain. 2011. Biomedical Marterials 6: 1–18.Google Scholar
  33. 33.
    Vauchel, P., K. Leroux, R. Kaas, A. Arhaliass, R. Baron, and J. Legrand. 2009. Bioresource Technology 100: 1291–1296.CrossRefGoogle Scholar
  34. 34.
    Pawar, S.N., and J.E. Kevin. 2012. Biomaterials 954: 3729–3305.Google Scholar
  35. 35.
    Haug, A., S. Melsom, and S. Omang. 1974. Environmental Pollution 7: 179–192.CrossRefGoogle Scholar
  36. 36.
    Mandal, S.S., S.S. Kumar, B. Krishnamoorthy, and S.K. Basu. 2010. Brazilian Journal of Pharmaceutical Sciences 46: 785–793.CrossRefGoogle Scholar
  37. 37.
    Vijayalakshmi, K., T. Gomathi, and P.N. Sudha. 2014. Der Pharmacia Lettre 6: 65–77.Google Scholar
  38. 38.
    Arica, M., C. Arpa, A. Ergene, G. Bayramoglu, and O. Genç. 2003. Carbohydrate Polymers 52: 167–174.CrossRefGoogle Scholar
  39. 39.
    ManguaL, J.O., S. Li, H.J. Ploehn, A.D. Ebner, and J.A. Ritter. 2010. Journal of Magnetism and Magnetic Materials 322: 3094–3100.CrossRefGoogle Scholar
  40. 40.
    Tiwari, A., and P. Kathane. 2013. International Research Journal of Environmental Sciences 2: 44–53.Google Scholar
  41. 41.
    Tiwari, A., A. Soni, and A.K. Bajpai. 2012. Synthesis and reactivity in inorganic, metal, organic and nanometal chemistry 42: 1158–1166.Google Scholar
  42. 42.
    Harikumar, P.S., and L. Joseph. 2012. International Journal of Plant, Animal and Environmental Sciences 2: 159–166.Google Scholar
  43. 43.
    Singh, P., S.K. Singh, J. Bajpai, A.K. Bajpai, and R.B. Shrivastava. 2014. Journal of Materials Research and Technology 3: 3195–3202.Google Scholar
  44. 44.
    Gomez, A., K. Wrobel, S. Kazunori, and T.W. Tzu. 2012. International Congress on Informatics, Environment, Energy and Applications-IEEA, vol. 38, IACSIT Press, Singapore.Google Scholar
  45. 45.
    Fourest, E., and B. Volesky. 1995. Environmental Science and Technology 30: 277–282.CrossRefGoogle Scholar
  46. 46.
    Lee, I., C.G. Leea, J.A. Parka, J.K. Kanga, S.Y. Yoon, and S.B. Kim. 2013. Desalination and Water Treatment 51: 3438–3444.CrossRefGoogle Scholar
  47. 47.
    Yadav, M., and K.Y. Rhee. 2012. Carbohydrate Polymers 90 (1): 165–173.CrossRefGoogle Scholar
  48. 48.
    Sadeghi, M., M. Esmat, F. Shafiei, L. Mansouri, and H. Shasava. 2014. Oriental Journal of Chemistry 30 (1): 247–253.CrossRefGoogle Scholar
  49. 49.
    Bajpai, A.K., and Giri, A. 2003. Carbohydrate polymers 53: 271–278.Google Scholar
  50. 50.
    Agrawal, P., and A.K. Bajpai. 2011. Toxicological and Environmental Chemistry 93 (7): 1277–1297.CrossRefGoogle Scholar
  51. 51.
    Degen, P., S. Leick, F. Siedenbiedel, and H. Rehage. 2012. Colloid and Polymer Science 290 (2): 97–106.CrossRefGoogle Scholar
  52. 52.
    Hong, H.J., H.S. Jeong, B.G. Kim, J. Hong, et al. 2016. Chemosphere 165: 231–238.CrossRefGoogle Scholar
  53. 53.
    Lezeharia, M., J.-P. Baslya, M., O. Baudua. 2010. Bouras Colloids and Surfaces A: Physicochemical Engineering Aspects 366: 88–94.Google Scholar
  54. 54.
    Chen, W., J.H. Kim, D. Zhang, K.H. Lee, et al. 2013. Journal of the Royal Society, Interface 10 (88): 1–10.CrossRefGoogle Scholar
  55. 55.
    Alginate Market: Global Industry Analysis and Forecast 2016–2024 http://www.persistencemarketresearch.com/market-research/alginate-market.asp.
  56. 56.
    Alginates & Derivatives Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024 www.marketsandmarkets.com.
  57. 57.
    Alginates & Derivatives Market—Global Trends & Forecast to 2019 http://www.fmcbiopolymer.com/Food/Ingredients/AlginatesPGA/Introduction.aspx.
  58. 58.
    Commercial Seaweed Market Analysis By Product (Brown Seaweed, Red Seaweed, Green Seaweed), By Form (Liquid, Powdered, Flakes), By Application (Agriculture, Animal Feed, Human Consumption) And Segment Forecasts To 2024 http://www.grandviewresearch.com/industry-analysis/commercial-seaweed-market.
  59. 59.
    Alginates & Derivatives Market worth $409.2 Million by 2019 http://www.marketsandmarkets.com/PressReleases/alginates-derivatives.asp.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. K. Bajpai
    • 1
    Email author
  • Priyanka Agrawal
    • 1
  • Sunil K. Singh
    • 2
  • Priyanka Singh
    • 1
  1. 1.Bose Memorial Research Laboratory, Department of ChemistryGovernment Model Science CollegeJabalpurIndia
  2. 2.Department of ChemistryGuru Ghasidas Central UniversityBillaspurIndia

Personalised recommendations