Cationic Nanosorbents Biopolymers: Versatile Materials for Environmental Cleanup

  • Sandeep K. Shukla
  • Rashmi Choubey
  • A. K. BajpaiEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


The present chapter aims to focus on biopolymers-based cationic nanoadsorbents which find numerous applications in removal of toxic metal ions from aqueous solutions. Besides giving an introductory account of the cationic nanosorbents of biopolymers, the chapter discusses various naturally occurring cationic polyelectrolytes like chitosan, cationic cellulose, cation cyclodextrins, and cationic dextran. With the mention of a brief idea of preparation of nanoparticles of these biopolymers, their applications in water remediation have been discussed. The chapter ends with remarks on the current limitations of this field and future prospects and scope for the chemists, environmentalists, and scientists.


Cationic biopolymers Nanomaterials Toxic metal ions Water remediation 


  1. 1.
    Hernandez, N., R.C. Williams, and E.W. Cochran. 2014. The battle for the “green” polymer. Different approaches for biopolymer synthesis: Bioadvantaged vs. bioreplacement. Organic & Biomolecular Chemistry 12: 2834–2849. doi: 10.1039/C3OB42339E.CrossRefGoogle Scholar
  2. 2.
    Mensitieri, G., E. Di Maio, G.G. Buonocore, I. Nedi, M. Oliviero, L. Sansone, and S. Iannace. 2011. Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends in Food Science & Technology 22 (2–3): 72–80.CrossRefGoogle Scholar
  3. 3.
    Jacquel, N., and C.-W. Lo. 2008. Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochemical Engineering Journal 39 (1): 15.CrossRefGoogle Scholar
  4. 4.
    Li, P., Y.F. Poon, W. Li, H.-Y. Zhu, S.H. Yeap, Y. Cao, X. Qi, C. Zhou, M. Lamrani, R.W. Beuerman, E.-T. Kang, Y. Mu, C.M. Li, M.W. Chang, S.S. Jan Leong, and M.B. Chan-Park. 2011. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nature Materials 10: 149–156.CrossRefGoogle Scholar
  5. 5.
    Zhou, J., J. Liu, C.J. Cheng, T.R. Patel, C.E. Weller, J.M. Piepmeier, Z. Jiang, and W.M. Saltzman. 2012. Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nature Materials 11: 82–90.CrossRefGoogle Scholar
  6. 6.
    Vroman, I., and L. Tighzert. 2009. Biodegradable polymers. Materials 2 (2): 307–344.CrossRefGoogle Scholar
  7. 7.
    Ahalya, N., T.V. Ramachandra, and R.D. Kanamadi. 2003. Biosorption of heavy metals. Journal of Chemistry and Environment 7 (4): 71–79.Google Scholar
  8. 8.
    Hua, M., S. Zhang, P. Pan, W. Zhang, L. Lv, and Q. Zhang. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials 211: 317–331.Google Scholar
  9. 9.
    Overview and comparison of conventional treatment technologies: Nano-based techniques. In Proceedings of International Workshop on Nanotechnology, Water and Development, India, 2006, 10–12.Google Scholar
  10. 10.
    U.S. Environmental Protection Agency Nanotechnology White Paper Prepared for the U.S. Environmental Protection Agency, 2007.Google Scholar
  11. 11.
    Wang, S., C. Wei, W. Wang, Q. Li, and Zhengping Hao. 2012. Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chemical Engineering Journal 197: 34–40.CrossRefGoogle Scholar
  12. 12.
    Mara, D.D. 2003. Domestic wastewater treatment in developing countries, 94–104.Google Scholar
  13. 13.
    Moore, S.K., N.J. Mantua, and E.P. Salathe Jr. 2011. Past trends and future scenarios for environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound shellfish. Harmful Algae 10 (5): 521–529.CrossRefGoogle Scholar
  14. 14.
    Hutton, R.J., J.J. Landsberg, and B.G. Sutton. 2007. Timing irrigation to suit citrus phenology: a means of reducing water use without compromising fruit yield and quality? Australian Journal of Experimental Agriculture 47: 71–80.CrossRefGoogle Scholar
  15. 15.
    Soto, M.L., A. Moure, H. Domínguez, and J.C. Parajo. 2011. Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering 105: 1–27.CrossRefGoogle Scholar
  16. 16.
    Milieu Ltd., WRc, RPA URI:, 2010, 266. Cited 2014/9/7.
  17. 17.
    Bratby, J. 2006. Coagulation and flocculation in water and wastewater treatment, 2nd ed. London, UK: IWA Publishing.Google Scholar
  18. 18.
    Duan, C., N. Zhao, X. Yu, et al. 2013. Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 20: 849–860.CrossRefGoogle Scholar
  19. 19.
    Fu, F., and Q. Wang. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92: 407–418.CrossRefGoogle Scholar
  20. 20.
    O’Connell D.W., C. Birkinshaw, and T.F. O’Dwyer. 2008. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology 99: 6709–6724.Google Scholar
  21. 21.
    Guardia, Pablo, Amilcar Labara, and Xavier Batlle. 2011. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. Journal of Physical Chemistry 115 (2): 390–396.Google Scholar
  22. 22.
    Guibal, E. 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 38: 43–74.CrossRefGoogle Scholar
  23. 23.
    Roberts, G.A.F. 1992. Chitin chemisę. Houndmills: Macmillan Press Ltd.Google Scholar
  24. 24.
    Johnson, E.L., and Q.P. Peniston. 1982. Utilization of shellfish waste from chitin and chitosan production. Westport: Chemistry and Biochemistry of Marine Food Products.Google Scholar
  25. 25.
    Annaduzzaman, M. 2015. Chitosan biopolymer as an adsorbent for drinking water treatment—Investigation on arsenic and uranium. TRITA-LWR LIC, 2015-02, 26 p.Google Scholar
  26. 26.
    Benavente, M. 2008. Adsorption of metallic ions onto chitosan: Equilibrium and kinetic studies. TRITA CHE Report, 44.Google Scholar
  27. 27.
    Sureshkumar, M.K., D. Das, M.B. Mallia, and P.C. Gupta. 2010. Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. Journal of Hazardous Materials 184 (1–3): 65–72.CrossRefGoogle Scholar
  28. 28.
    Soliman, E.A., S.M. El-Kousy, H.M. Abd-Elbary, and A.R. Abou-zeid. 2013. Low molecular weight chitosan-based schiff bases: Synthesis, characterization and antibacterial activity. American Journal of Food Technology 8 (1): 17–30.Google Scholar
  29. 29.
    Blackwell, J., R. Minke, and K.H. Gardner. 1978. Determination of the structures of α- and β-chitins by X-ray diffraction. In Proceedings of the First International Conference on Chitin/Chitosan, ed. R.A.A. Muzzarelli, and E.R. Pariser, 108–123. Cambridge, MA: MIT Sea Grant Program, Massachusetts Institute of Technology.Google Scholar
  30. 30.
    Vartiainen, J., and A. Harlin. 2011. Crosslinking as an efficient tool for decreasing moisture sensitivity of biobased nanocomposite films. Materials Sciences and Applications 2: 346–354.
  31. 31.
    Crini, G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science 30: 38–70.CrossRefGoogle Scholar
  32. 32.
    Chunguang, Yua, and Xuena Han. 2015. Adsorbent material used in water treatment—A review. In 2nd International Workshop on Materials Engineering and Computer Sciences IWMECS.Google Scholar
  33. 33.
    Cai, J., J. Yang, Y. Du, L. Fan, Y. Qiu, J. Li, and J.F. Kennedy. 2006. Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Carbohydrate Polymers 65: 211–217. doi: 10.1016/j.carbpol.2006.01.003.CrossRefGoogle Scholar
  34. 34.
    Salehi, E., S.M. Hosseini, S. Ansari, and A. Hamidi. 2016. Surface modification of sulfonated polyvinylchloride cation-exchange membranes by using chitosan polymer containing Fe3O4 nanoparticles. Journal of Solid State Electrochemistry 20 (2): 371–377.CrossRefGoogle Scholar
  35. 35.
    Westergren, Robin. 2006. Arsenic removal using biosorption with Chitosan: Evaluating the extraction and adsorption performance of Chitosan from shrimp shell waste. TRITA IC.Google Scholar
  36. 36.
    Varma, A.J., S.V. Deshpande, and J.F. Kennedy. 2004. Metal complexation by chitosan and its derivatives: A review. Carbohydrate Polymers 55: 77–79.CrossRefGoogle Scholar
  37. 37.
    Franco, L.D.O., R.D.C.C. Maia, A.L.F. Porto, A.S. Messias, K. Fukushima, and G.M.D. Campos-Takaki. 2004. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Brazilian Journal of Microbiology 35 (3): 243–247.Google Scholar
  38. 38.
    Salehia, Ehsan, Parisa Daraeib, and Ahmad Arabi Shamsabadi. 2016. A review on chitosan-based adsorptive membranes. Carbohydrate Polymers 152: 419–432.CrossRefGoogle Scholar
  39. 39.
    Kamiński, W., and Z. Modrzejewska. 1997. Application of chitosan membranes in separation of heavy metal ions. Separation Science and Technology 32 (16): 2659–2668.Google Scholar
  40. 40.
    Liu, C., and R. Bai. 2006. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. Journal of Membrane Science 284 (1): 313–322.CrossRefGoogle Scholar
  41. 41.
    Salehi, E., S. Madaeni, L. Rajabi, V. Vatanpour, A. Derakhshan, S. Zinadini, et al. 2012. Novel chitosan/poly (vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu (II) removal from water: Preparation, characterization, adsorption kinetics and thermodynamics. Separation and Purification Technology 89: 309–319.CrossRefGoogle Scholar
  42. 42.
    Salehi, E., S. Madaeni, L. Rajabi, A. Derakhshan, S. Daraei, and V. Vatanpour. 2013. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chemical Engineering Journal 215: 791–801.CrossRefGoogle Scholar
  43. 43.
    Elson, C.M., E.M. Bem, and R.G. Acman. 1980. Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Research 14: 1307.CrossRefGoogle Scholar
  44. 44.
    Kyzas Gearge, Z., and A. Deliyanni Eleni. 2013. Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18 (6): 6193–6214.Google Scholar
  45. 45.
    Zhou, Limin, Yiping Wang, Zhirong Liu, and Qunwu Huang. 2009. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials 161: 995–1002.CrossRefGoogle Scholar
  46. 46.
    Vartiainen, J., M. Vähä-Nissi, and A. Harlin, Biopolymer films and coatings in packaging applications—A review of recent developments. Materials Sciences and Applications 5: 708–718.
  47. 47.
    Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science 31: 603–632. doi: 10.1016/j.progpolymsci.2006.06.001.CrossRefGoogle Scholar
  48. 48.
    Mohan, Sneha, Oluwatobi S. Oluwafemi, Nandakumar Kalarikkal, Sabu Thomas, and Sandile P. Songca. 2016. Chapter 3, Biopolymers—Application in nanoscience and nanotechnology, nanotechnology. INTECH Publication.
  49. 49.
    Moon, R.J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40 (7): 3941–3994.CrossRefGoogle Scholar
  50. 50.
    Hebeish, A.A., M.H. El-Rafie, F.A. Abdel-Mohdy, E.S. Abdel-Halim, and H.E. Emam. 2010. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers 82 (3): 933–941.Google Scholar
  51. 51.
    Brännvall, E. 2007. Aspect on strength delivery and higher utilisation of strength potential of soft wood kraft pupl fibres. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  52. 52.
    John, M.J., and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71: 343–364.CrossRefGoogle Scholar
  53. 53.
    Brett, C.T. 2000. Cellulose microfibrils in plants: Biosynthesis, deposition, and integration into the cell wall. International Review of Cytology 199: 161–199. doi: 10.1016/S0074-7696(00)99004-1.
  54. 54.
    Siqueira, G., and J. Bras. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers (Basel) 2 (4): 728–765.Google Scholar
  55. 55.
    Liesiene, J., and J. Matulioniene. 2004. Application of water-soluble diethylaminoethylcellulose in oral drug delivery systems. Reactive and Functional Polymers 59: 185.CrossRefGoogle Scholar
  56. 56.
    Scott, G. (ed.). 2002. Degradable polymers: Principles and applications, 2nd ed. Dordrecht: Kluwer Academic.Google Scholar
  57. 57.
    Sirvio, J., A. Honka, H. Liimatainen, J. Niinimaki, and O. Hormi. 2011. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohydrate Polymers 86: 266.Google Scholar
  58. 58.
    Liesiene, Jolanta, and Jurgita Kazlauske. 2013. Functionalization of cellulose: Synthesis of water-soluble cationic cellulose derivatives. Cellulose Chemistry and Technology 47 (7–8): 515–525.Google Scholar
  59. 59.
    Khan, Fareha Zafar, Masashi Shiotsuki, Fumio Sanda, Yoshiyuki Nishio, and Toshio Masuda. 2008. Synthesis and properties of amino acid esters of hydroxypropyl cellulose. Journal of Polymer Science Part A: Polymer Chemistry 46: 2326–2334.CrossRefGoogle Scholar
  60. 60.
    Villiers, A. 1891. Sur la fermentation de la fécule par l’action du ferment butyrique. Comptes Rendus des Seances de l’Academie des Sciences 112: 536–538.Google Scholar
  61. 61.
    Loftsson, Thorsteinn, Pekka Jarho, Már Másson, and Tomi Järvinen. 2005. Cyclodextrins in drug delivery. Expert Opinion on Drug Delivery 2 (2): 335–351.CrossRefGoogle Scholar
  62. 62.
    Frömming, K.-H., and J. Szejtli. 1994. Cyclodextrins in pharmacy. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  63. 63.
    Loftsson, T., and M.E. Brewster. 1996. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences 85: 1017–1025.CrossRefGoogle Scholar
  64. 64.
    Klemm, D., B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht. 1998. Comprehensive cellulose chemistry, vol. 1. Weinheim: Wiley-VCH.Google Scholar
  65. 65.
    Ducoroy, L., M. Bacquet, B. Martel, and M. Morcellet. 2008. Removal of heavy metals from aqueous media by cation exchange nonwoven PET coated with β-cyclodextrin-polycarboxylic moieties. Reactive and Functional Polymers 68: 594.CrossRefGoogle Scholar
  66. 66.
    Norkus, E. 2009. Metal ion complexes with native cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry 65: 237.CrossRefGoogle Scholar
  67. 67.
    Magnúsdóttir, A., M. Másson, and T. Loftsson. 2002. Self association and cyclodextrin solubilization of NSAIDs. Journal of Inclusion Phenomena and Macrocyclic Chemistry 44: 213–218.CrossRefGoogle Scholar
  68. 68.
    Thiele, C., D. Auerbach, G. Jung, L. Qiong, M. Schneider, and G. Wenz. 2011. Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polymer Chemistry 2: 209–215.CrossRefGoogle Scholar
  69. 69.
    Balta, D.K., E. Bagdatli, N. Arsu, N. Ocal, and Y. Yagci. 2008. Chemical incorporation of thioxanthone into β-cyclodextrin and its use in aqueous photopolymerization of methyl methacrylate. Journal of Photochemistry and Photobiology A: Chemistry 196: 33.CrossRefGoogle Scholar
  70. 70.
    Del Valle, E.M. 1033. Cyclodextrins and their uses: A review. Process Biochemistry 2004: 39.Google Scholar
  71. 71.
    Zhao, G.X., H.X. Zhang, Q.H. Fan, X.M. Ren, J.X. Li, and Y.X. Chen. 2010. Sorption of copper (II) onto super-adsorbent of bentonite–polyacrylamide composites. Journal of Hazardous Materials 173: 661.CrossRefGoogle Scholar
  72. 72.
    Xie, D.M., and W.X. Sun. 2006. Cyclodextrin and polymers supramolecular complexes as biomaterials. Journal of Materials Science and Engineering 24: 623.Google Scholar
  73. 73.
    Allabashi, R., M. Arkas, G. Hörmann, and D. Tsiourvas. 2007. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Research 41 (2): 476–486 (Epub 2006).Google Scholar
  74. 74.
    Haung, Z, S. Liu, B. Zhang, L. Xu, and X. Hu. 2012. Equilibrium and kinetic studies on the adsorpiton of Cu (II) from the aqueous phase using a β-cyclodextrin based adsorbent. Carbohydrate Polymers 88: 608.Google Scholar
  75. 75.
    Kriz, Z., J. Koca, A. Imberty, A. Charlot, and R. Auzely-Velty. 2003. Investigation of the complexation of (+)-catechin by β-cyclodextrin by a combination of NMR, microcalorimetry and molecular modeling techniques. Organic & Biomolecular Chemistry 1: 2590–2595.CrossRefGoogle Scholar
  76. 76.
    Ozmen, E.Y., M. Sezgin, A. Yilmaz, and M. Yilmaz. 2008. Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresource Technology 99 (3): 526–531.Google Scholar
  77. 77.
    Szejtli, J. 1998. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 98: 1743.CrossRefGoogle Scholar
  78. 78.
    Sakairi, N., N. Nishi, and S. Tokura. 1999. Cyclodextrin-linked chitosan: Synthesis and inclusion complexation ability. In: Polysaccharide applications: Cosmetics and pharmaceuticals, vol. 737, ed. M.A. El-Nokaly, and H.A. Soini, 68–84. ACS Symposium Series.Google Scholar
  79. 79.
    Hu, J., D. Shao, C. Chen, G. Sheng, J. Li, X. Wang, and M. Nagatsu. 2010. Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. The Journal of Physical Chemistry B 114: 6779.Google Scholar
  80. 80.
    Rigby, P.G. 1969. Prolongation of survival of tumour-bearing animals by transfer of “immune” RNA with DEAE-dextran. Nature 221: 968–969.CrossRefGoogle Scholar
  81. 81.
    Kaminski, K., M. Ponka, J. Ciejka, K. Szczubiaka, M. Nowakowska, B. Lorkowska, R. Korbut, and R. Lach. 2011. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists. Journal of Medicinal Chemistry 54: 6586–6596.CrossRefGoogle Scholar
  82. 82.
    Misaki, A., M. Torii, T. Sawai, and I.J. Goldstein. 1980. Structure of the dextran of Leuconostoc mesenteroides B-1355. Carbohydrate Research 84: 273–285.CrossRefGoogle Scholar
  83. 83.
    Heinze, T., T. Liebert, B. Heublein, and S. Hornig. 2006. Functional polymers based on dextran. Advances in polymer science, vol. 205, 199–291.Google Scholar
  84. 84.
    Hosseinkhani, H., T. Azzam, Y. Tabata, and A.J. Domb. 2004. Dextran-spermine polycation: An efficient nonviral vector for in vitro and in vivo gene transfection. Gene Therapy 11: 194–203.Google Scholar
  85. 85.
    Azzam, T.H. Eliyahu, A. Makovitzki, M. Linial, and A.J. Domb. 2004. Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection. Journal Controlled Release 96: 309–323.Google Scholar
  86. 86.
    Hucker, G.J., and C.S. Pederson. 1930. Studies on coccaceae XVI. Genus Leuconostoc. New York State Agricultural Experiment Station Technical Bulletin 167: 3–8.Google Scholar
  87. 87.
    Jeanes, A., W.C. Haynes, C.A. Wilham, J.C. Rankin, E.H. Melvin, M.J. Austin, J.E. Cluskey, B.E. Fisher, H.M. Tsuchiya, and C.E. Rist. 1954. Characterization and classification of dextrans from ninety-six strains of bacteria. Journal of the American Chemical Society 76: 5041.CrossRefGoogle Scholar
  88. 88.
    Qader, Shah Ali U.L., L. Iqbal, A. Aman, E. Shireen, and A. Azhar. 2006. Production of dextran by newly isolated strains of Leuconostoc mesenteroides PCSIR-4 and PCSIR-9. Turkish Journal of Biochemistry 26: 21–26.Google Scholar
  89. 89.
    Lemarchand, C., P. Couvreur, C. Vauthier, D. Costantini, and R. Gref. 2003. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. International Journal of Pharmaceutics 254 (1): 77–82, 0378–5173 (Print).Google Scholar
  90. 90.
    Rotureau, E., M. Leonard, E. Dellacherie, and A. Durand. 2004. Amphiphilic derivatives of dextran: Adsorption at air/water and oil/water interfaces. Journal of Colloid and Interface Science 279 (1): 68–77, 0021–9797 (Print).Google Scholar
  91. 91.
    Samal, Sangram Keshari, Marnoni Dash, Sandra Van Vlierberghe, David L. Kaplan, Erno Chiellini, Clemens van Blitterswijik, Lorenzo Moroni, and Peter Dubruel. 2012. Cationic polymers and their therapeutic potential. Chemical Society Reviews 41 (21): 7147–7194.Google Scholar
  92. 92.
    Naessens, M., A. Cerdobbel, W. Soetaert, and E.J. Vandamme. 2005. Leuconostoc dextransucrase and dextran: Production, properties and applications. Journal of Chemical Technology & Biotechnology 80: 845–860.Google Scholar
  93. 93.
    Aumelas, A., A. Serrero, A. Durand, E. Dellacherie, and M. Leonard. 2007. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems. Colloids and Surfaces B: Biointerfaces 59 (1): 74–80, 0927–7765 (Print).Google Scholar
  94. 94.
    Chen, X.G., C.M. Lee, and H.J. Park. 2003. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid modified chitosan in the aqueous system. Journal of Agricultural and Food Chemistry 51 (10): 3135–3139, 0021–8561 (Print).Google Scholar
  95. 95.
    Kildeevaa, N.R., P.A. Perminova, L.V. Vladmirov, V.V. Novikove, and S.N. Mikhailove. 2009. Mechanism of the reaction of glutaraldehyde with chitosan. Russian Journal of Bioorganic Chemistry 35 (3): 360–369.Google Scholar
  96. 96.
    Nasti, A., N.M. Zaki, P.D. Leonardis, S. Ungphaiboon, P. Sansongsak, M.G. Rimoli, and N. Tirelli. 2009. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: Systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical Research 26: 1918–1930.CrossRefGoogle Scholar
  97. 97.
    Lin, A.H., Y.M. Liu, and Q.N. Ping. 2007. Free amino groups on the surface of chitosan nanoparticles and its characteristics. Yao Xue Xue Bao 42: 323–328.Google Scholar
  98. 98.
    Cheng, C., J. Deng, B. Lei, A. He, X. Zhang, L. Ma, S. Li, and C. Zhao. 2013. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. Journal of Hazardous Materials 263: 467–478. doi: 10.1016/j.jhazmat.2013.09.065.CrossRefGoogle Scholar
  99. 99.
    Sankar, M.U., S. Aigal, S.M. Maliyekkal, A. Chaudhary, A. Avula, A. Kumar, K. Chaudhari, and T. Pradeep. 2013. Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. Proceedings of the National Academy of Sciences 110: 8459–8464. doi: 10.1073/pnas.1220222110.
  100. 100.
    Mahmoudi, M., S. Sant, B. Wang, S. Laurent, and T. Sen. 2011. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews 63: 24–46.CrossRefGoogle Scholar
  101. 101.
    Zhang, Wei-Xian. 2005. Nanotechnology for Water purification and waste treatment, Frontiers in nanotechnology, US EPA Millennium Lecture Series July 18, Washington D.C.Google Scholar
  102. 102.
    Khatami, Seyed Yavar, and Zahra Hejri. 2015. Optimizing the adsorption conditions of lead from aqueous solutions onto chitosan nano particles. Journal of Applied Environmental and Biological Science 4 (11S): 150–159.Google Scholar
  103. 103.
    Zahra Hezri, 2015. Optimizing the adsorption conditions of lead from aqueous solutions on chitosan nanoarticles. Journal of Applied Environmental and Biological Science 4 (115):150.Google Scholar
  104. 104.
    Bhavani, A.L., and J. Nisha. 2010. Dextran—The polysaccharide with versatile uses. PG & Research Department of Biotechnology, Sengunthar Arts & Science College, Tiruchengode 637205, Namakkal District, Tamilnadu, India.Google Scholar
  105. 105.
    El-Kafrawy, Ahmed Fawzy, Shimaa Mohamed El-Saeed, Reem Kamel Farag, Hend Al-Aidy El-Saied, and Manar El-Sayed Abdel-Raouf. 2017. Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution. Egyptian Journal of Petroleum 26: 23–32.CrossRefGoogle Scholar
  106. 106.
    Suopajärvi, Terhi. 2015. Functionalized nanocelluloses in wastewater treatment applications. Acta Universitatis Ouluensis C, 526.Google Scholar
  107. 107.
    Dubey, Renu, J. Bajpai, and A.K. Bajpai. 2016. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environmental Nanotechnology, Monitoring and Management.
  108. 108.
    Hokkanen, Sanna, Eveliina Repo, and Mika Sillanpää. 2013. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal 223: 40–47.CrossRefGoogle Scholar
  109. 109.
    Hokkanen, Sanna, Eveliina Repo, Terhi Suopajärvi, Henrikki Liimatainen, Jouko Niinimaa, and Mika Sillanpää. 2014. Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21: 1471–1487.CrossRefGoogle Scholar
  110. 110.
    Donia, A.M., A.A. Atia, and F.I. Abouzayed. 2012. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chemical Engineering Journal 191: 22–30.CrossRefGoogle Scholar
  111. 111.
    Leyla, Ekhlasi, Younesi Habibollah, Mehraban Zahra, and Bahramifar Nader. 2013. Synthesis and application of chitosan nanoparticles for removal of lead ions from aqueous solutions. Water and Wastewater 24 (1): 10–18.Google Scholar
  112. 112.
    Salipira, K.L., B.B. Mamba, R.W. Krause, T.J. Malefetse, and S.H. Durbach. 2008. Cyclodextrin polyurethanes polymerised with carbon nanotubes for the removal of organic pollutants in water. Water SA 34 (1): 113–118.Google Scholar
  113. 113.
    Fan, Lulu, Chuannan Luo, Min Sun, Huamin Qiu, and Xiangjun Li. 2013. Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces 103: 601–607.CrossRefGoogle Scholar
  114. 114.
    Adams, Feyisayo V., Edward N. Nxumaloa, Rui W.M. Krausea, Eric M.V. Hoek, and Bhekie B. Mamba. 2012. Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. Journal of Membrane Science 405–406: 291–299.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sandeep K. Shukla
    • 1
  • Rashmi Choubey
    • 2
  • A. K. Bajpai
    • 2
    Email author
  1. 1.Wainganga DivisionCentral Wataer CommissionNagpurIndia
  2. 2.Bose Memorial Research Laboratory, Department of ChemistryGovernment Model Science CollegeJabalpurIndia

Personalised recommendations