Lignin and Chitosan-Based Materials for Dye and Metal Ion Remediation in Aqueous Systems

  • Thato Masilompane
  • Nhamo ChaukuraEmail author
  • Ajay K. Mishra
  • Shivani B. Mishra
  • Bhekie B. Mamba
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


In view of dwindling fresh water sources, water pollution due to dyes and toxic metals is cause for concern. The increase in industrial activity around the world results in the emission of dyes and toxic metals into the aquatic environment and exerts pressure on water treatment plants. The removal of these contaminants is problematic because they can be available in very low concentrations, and water treatment plants are not designed to remove them effectively. A number of approaches including coagulation, precipitation, membrane filtration, and activated carbon adsorption, have been used for the remediation of contaminated water, but these methods are generally limited by high cost and poor selectivity. Lignin- and chitosan-based nanocomposites are potentially useful for these applications because they have minimal environmental footprints, are cost effective, and are compatible with a wide range of materials in composites. Laboratory scale experiments carried out to evaluate these materials have shown that the composites of these materials have remarkable dye and heavy metal (HM) removal capacities, thus making the technology accessible and potentially manageable at a large scale. Using Web of Science, Scopus, Sciencedirect, Springer, and Google Scholar, we evaluated literature on (1) the prevalence and environmental and health impact of pollution due to dye- and metal-laden effluents, (2) available remediation technologies, (3) the synthetic pathways for different chitosan-based nanocomposites, and (4) the potential of chitosan-based nanocomposites for dye and HM removal. There has been a gradual increase in the research of the use of lignin/chitosan-based adsorbent, showing the rapid interest and potential in the materials.


Adsorption Biodegradable Environment Nanocomposites Pollutants 


  1. 1.
    Gupta, V.K., P.J.M. Carrott, M.M.L. Carrott, and Suhas. 2009. Low-cost adsorbents: Growing approach to wastewater treatment—A review. Critical Reviews in Environmental Science and Technology 39: 783–842.CrossRefGoogle Scholar
  2. 2.
    Adeleye, A.S., J.R. Conway, K. Garner, Y. Huang, Y. Su, and A.A. Keller. 2016. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal 286: 640–662.CrossRefGoogle Scholar
  3. 3.
    Tan, K.B., M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, and B. Salamatinia. 2015. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology 150: 229–242.CrossRefGoogle Scholar
  4. 4.
    Sewu, D.D., P. Boakye, and S.H. Woo. 2017. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresource Technology 224: 206–213.CrossRefGoogle Scholar
  5. 5.
    Shen, K., and M.A. Gondal. 2017. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. Journal of Saudi Chemical Society 21: S120–S127.CrossRefGoogle Scholar
  6. 6.
    Zaharia, C. and D. Suteu. 2012. Textile organic dyes characteristics, polluting effects, and separation/elimination procedures from industrial effluents. A critical overview. In Organic pollutants—Ten years after the Stockholm convention. Environmental and analytical update, ed. T. Puzyn and A. Mostrag-Szlichtyng, 55–86. Rijeka: Intech Publisher Inc.Google Scholar
  7. 7.
    Meili, L., T.S. da Silva, D.C. Henrique, J.I. Soletti, S.H.V. de Carvalho, E.J.S. Fonseca, A.R.F. de Almeida, and G.L. Dotto. 2016. Ouricuri (Syagrus coronata) fiber: A novel biosorbent to remove methylene blue from aqueous solutions. Water Science and Technology. doi: 10.2166/wst.2016.495.Google Scholar
  8. 8.
    Blanco, S.P.D.M., F.B. Scheufele, A.N. Módenes, F.R. Espinoza-Quiñones, P. Marin, A.D. Kroumov, and C.E. Borba. 2017. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal 307: 466–475.CrossRefGoogle Scholar
  9. 9.
    Belhaine, A., M.R. Ghezzar, F. Abdelmalek, K. Tayebi, A. Ghomari, and Addou A. Ahmed. 2016. Removal of methylene blue dye from water by a spent bleaching earth biosorbent. Water Science and Technology. doi: 10.2166/wst.2016.407.Google Scholar
  10. 10.
    Kyzas, G.Z., E.A. Deliyanni, and N.K. Lazaridis. 2014. Magnetic modification of microporous carbon for dye adsorption. Journal of Colloid and Interface Science 430: 166–173.CrossRefGoogle Scholar
  11. 11.
    Abdel-Khalek, M.A., M.K.A. Rahman, and A.A. Francis. 2017. Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg. Journal of Environmental Chemical Engineering 5: 319–327.CrossRefGoogle Scholar
  12. 12.
    Han, H., W. Wei, Z. Jiang, J. Lu, J. Zhu, and J. Xie. 2016. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochem. Engineering. Aspects 509: 539–549.CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya, A., D. Mondal, I. Roy, G. Sarkar, N.R. Saha, D. Rana, T.K. Ghosh, D. Mandal, M. Chakraborty, and D. Chattopadhyay. 2017. Studies of the kinetics and mechanism of the removal process of proflavine dye through adsorption by graphene oxide. Journal of Molecular Liquids 230: 696–704.CrossRefGoogle Scholar
  14. 14.
    Ngulube, T., J.R. Gumbo, V. Masindi, and A. Maity. 2017. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. Journal of Environmental Management 191: 35–57.CrossRefGoogle Scholar
  15. 15.
    Lijo, L., S. Malamis, S. Gonzalez-García, F. Fatone, M.T. Moreira, and E. Katsou. 2017. Technical and environmental evaluation of an integrated scheme for the co-treatment of wastewater and domestic organic waste in small communities. Water Research 109: 173–185.CrossRefGoogle Scholar
  16. 16.
    Raman, C.D., and S. Kanmani. 2016. Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management 177: 341–355.CrossRefGoogle Scholar
  17. 17.
    Luo, X., S. Fu, Y. Du, J. Guo, and B. Li. 2017. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous and Mesoporous Materials 237: 268–274.CrossRefGoogle Scholar
  18. 18.
    Wasti, A., and M.A. Awan. 2016. Adsorption of textile dye onto modified immobilized activated alumina. Journal of the Association of Arab Universities for Basic and Applied Sciences 20: 26–31.CrossRefGoogle Scholar
  19. 19.
    Zhang, L., P. Hu, J. Wang, and R. Huang. 2016. Crosslinked quaternized chitosan/bentonite composite for the removal of Amino black 10B from aqueous solutions. International Journal of Biological Macromolecules 93: 217–225.CrossRefGoogle Scholar
  20. 20.
    Aysan, H., S. Edebali, C. Ozdemir, M.C. Karakaya, and N. Karakaya. 2016. Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials 235: 78–86.CrossRefGoogle Scholar
  21. 21.
    Kumar, A., and H.M. Jena. 2016. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. Journal of Cleaner Production 137: 1246–1259.CrossRefGoogle Scholar
  22. 22.
    Mohan, D., K.P. Singh, and V.K. Singh. 2008. Wastewater treatment using low cost activated carbons derived from agricultural byproducts—A case study. Journal of Hazardous Materials 152: 1045–1053.CrossRefGoogle Scholar
  23. 23.
    Elaigwu, S.E., and G.M. Greenway. 2016. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. Journal of Analytical and Applied Pyrolysis 118: 1–8.CrossRefGoogle Scholar
  24. 24.
    Kalaivani, S.S., A. Muthukrishnaraj, S. Sivanesan, and L. Ravikumar. 2016. Novel hyperbranched polyurethane resins for theremoval of heavy metal ions from aqueous solution. Process Safety and Environmental Protection 104: 11–23.CrossRefGoogle Scholar
  25. 25.
    Kang, C., and J. So. 2016. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering 97: 304–312.CrossRefGoogle Scholar
  26. 26.
    Wijayawardena M.A.A., Megharaj M., Naidu R. (2016) Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. In Advances in Agronomy, vol. 138.
  27. 27.
    Mustafa, G., and S. Komatsu. 2016. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta 1864: 932–944.CrossRefGoogle Scholar
  28. 28.
    Bunhu, T., L. Tichagwa, and N. Chaukura. 2016. Competitive sorption of Cd2+ and Pb2+ from a binary aqueous solution by poly (methyl methacrylate)-grafted montmorillonite clay nanocomposite. Appl Water Sci. doi: 10.1007/s13201-016-0404-5.Google Scholar
  29. 29.
    Zhang, J., L. Li, Y. Li, and C. Yang. 2017. Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chemical Engineering Journal 313: 1132–1141.CrossRefGoogle Scholar
  30. 30.
    Wu, Q., H. Zhou, N.F.Y. Tam, Y. Tian, Y. Tan, S. Zhou, Q. Li, Y. Chen, and J.Y.S. Leung. 2016. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals. Marine Pollution Bulletin 104: 153–161.CrossRefGoogle Scholar
  31. 31.
    Gupta, P., and B. Diwan. 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports 13: 58–71.CrossRefGoogle Scholar
  32. 32.
    Korashy, H.M., I.M. Attafi, K.S. Famulski, S.A. Bakheet, M.M. Hafez, A.M.S. Alsaad, and A.R.M. Al-Ghadeer. 2017. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environmental Pollution 221: 64–74.CrossRefGoogle Scholar
  33. 33.
    Cai, Y., C. Li, D. Wu, W. Wang, F. Tan, X. Wang, P.K. Wong, and X. Qiao. 2017. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chemical Engineering Journal 312: 158–166.CrossRefGoogle Scholar
  34. 34.
    Kiran, M.G., K. Pakshirajan, and G. Das. 2017. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. Journal of Hazardous Materials 324: 62–70.CrossRefGoogle Scholar
  35. 35.
    Huang, J., F. Yuan, G. Zeng, X. Li, Y. Gu, L. Shi, W. Liu, and Y. Shi. 2017. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultra filtration. Chemosphere 173: 199–206.CrossRefGoogle Scholar
  36. 36.
    Xu, Y., C. Zhang, M. Zhao, H. Rong, K. Zhang, and Q. Chen. 2017. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 168: 1152–1157.CrossRefGoogle Scholar
  37. 37.
    Robinson, T. 2017. Removal of toxic metals during biological treatment of landfill leachates. Waste Management. doi: 10.1016/j.wasman.2016.12.032.Google Scholar
  38. 38.
    Dong, H., Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, and Y. Li. 2016. The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater. Journal of Hazardous Materials 304: 306–312.CrossRefGoogle Scholar
  39. 39.
    Ngah, W.S.W., L.C. Teong, and M.A.K.M. Hanafiah. 2011. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 83: 1446–1456.CrossRefGoogle Scholar
  40. 40.
    Kolodyńska, D., M. Gęca, I.V. Pylypchuk, and Z. Hubicki. 2016. Development of New Effective Sorbents Based on Nanomagnetite. Nanoscale Research Letters 11: 152–162.CrossRefGoogle Scholar
  41. 41.
    Tran, V.S., H.H. Ngo, W. Guo, J. Zhang, S. Liang, C. Ton-That, and X. Zhang. 2015. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresource Technology 182: 353–363.CrossRefGoogle Scholar
  42. 42.
    Ghaee, A., J. Nourmohammadi, and P. Danesh. 2017. Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydrate Polymers 157: 695–703.CrossRefGoogle Scholar
  43. 43.
    Srinivasan, A., and T. Viraraghavan. 2010. Oil removal from water using biomaterials. Bioresource Technology 101: 6594–6600.CrossRefGoogle Scholar
  44. 44.
    Renault, F., B. Sancey, P.M. Badot, and G. Crini. 2009. Chitosan for coagulation/flocculation processes—An eco-friendly approach. European Polymer Journal 45: 1337–1348.CrossRefGoogle Scholar
  45. 45.
    Ammar, N.S., H. Elhaes, H.S. Ibrahim, W. El hotaby, and M.A. Ibrahim. 2014. A novel structure for removal of pollutants from wastewater. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121: 216–223.CrossRefGoogle Scholar
  46. 46.
    Albadarin, A.B., M.N. Collins, M. Naushad, S. Shirazian, G. Walker, and C. Mangwandi. 2017. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal 307: 264–272.CrossRefGoogle Scholar
  47. 47.
    Aydin, Y.A., and N.D. Aksoy. 2009. Adsorption of chromium on chitosan: Optimization, kinetics and Thermodynamics. Chemical Engineering Journal 151: 188–194.CrossRefGoogle Scholar
  48. 48.
    Gupta, V.K., and Suhas. 2009. Application of low-cost adsorbents for dye removal—A review. Journal of Environmental Management 90: 2313–2342.CrossRefGoogle Scholar
  49. 49.
    Gong, W., Z. Ran, F. Ye, and G. Zhao. 2017. Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase. Food Chemistry 228: 455–462.CrossRefGoogle Scholar
  50. 50.
    Santos, P.S.B., X. Erdocia, D.A. Gatto, and J. Labid. 2014. Characterisation of Kraft lignin separated by gradient acid precipitation. Industrial Crops and Products 55: 149–154.CrossRefGoogle Scholar
  51. 51.
    Duval, A., and M. Lawoko. 2014. A review on lignin-based polymeric, micro- and nano-structured Materials. Reactive and Functional Polymers 85: 78–96.CrossRefGoogle Scholar
  52. 52.
    Brahim, M., N. Boussetta, N. Grimi, E. Vorobiev, I. Zieger-Devin, and N. Brosse. 2017. Pretreatment optimization from rapeseed straw and lignin characterization. Industrial Crops and Products 95: 643–650.CrossRefGoogle Scholar
  53. 53.
    Zikeli, F., T. Ters, K. Fackler, E. Srebotnik, and J. Li. 2016. Wheat straw lignin fractionation and characterization as lignin-carbohydrate complexes. Industrial Crops and Products 85: 309–317.CrossRefGoogle Scholar
  54. 54.
    Gellerstedt, G. 2015. Softwood kraft lignin: Raw material for the future. Industrial Crops and Products 77: 845–854.CrossRefGoogle Scholar
  55. 55.
    Wu, Y., S. Zhang, X. Guo, and H. Huang. 2008. Adsorption of chromium (III) on lignin. Bioresource Technology 99: 7709–7715.CrossRefGoogle Scholar
  56. 56.
    Guo, X., S. Zhang, and X. Shan. 2008. Adsorption of metal ions on lignin. Journal of Hazardous Materials 151: 134–142.CrossRefGoogle Scholar
  57. 57.
    Klapiszewski, L., P. Bartczak, M. Wysokowski, M. Jankowska, K. Kabat, and T. Jesionowski. 2015. Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chemical Engineering Journal 260: 684–693.CrossRefGoogle Scholar
  58. 58.
    Zhou, C., Q. Gao, S. Wang, Y. Gong, K. Xia, B. Han, M. Li, and Y. Ling. 2016. Remarkable performance of magnetized chitosan-decorated lignocellulose fiber towards biosorptive removal of acidic azo colorant from aqueous environment. Reactive and Functional Polymers 100: 97–106.CrossRefGoogle Scholar
  59. 59.
    Mussatto, S.I., M. Fernandes, G.J.M. Rocha, J.J.M. Orfao, J.A. Teixeira, and I.C. Roberto. 2010. Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology 101: 2450–2457.CrossRefGoogle Scholar
  60. 60.
    Gwenzi, W., N. Chaukura, F.N.D. Mukome, S. Machado, and B. Nyamasoka. 2015. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management 150: 250–261.CrossRefGoogle Scholar
  61. 61.
    Ge, Y., L. Qin, and Z. Li. 2016. Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal. Materials and Design 95: 141–147.CrossRefGoogle Scholar
  62. 62.
    Kai, D., M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap, and X.J. Loh. 2016. Towards lignin-based functional materials in a sustainable world. Green Chemistry 18: 1175–1200.CrossRefGoogle Scholar
  63. 63.
    Nevárez, L.A.M., L.B. Casarrubias, A. Celzard, V. Fierro, V.T. Muñoz, A.C. Davila, J.R.T. Lubian, and G.G. Sánchez. 2011. Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films. Science and Technology of Advanced Materials 12: 1–16.CrossRefGoogle Scholar
  64. 64.
    Shitrit, Y., and H. Bianco-Peled. 2017. Acrylated chitosan for mucoadhesive drug delivery systems. International Journal of Pharmaceutics 517: 247–255.CrossRefGoogle Scholar
  65. 65.
    Moreno-Vásquez, M.J., E.L. Valenzuela-Buitimea, M. Plascencia-Jatomea, J.C. Encinas-Encinas, F. Rodríguez-Félix, S. Sánchez-Valdes, E.C. Rosas-Burgos, V.M. Ocano-Higuera, and A.Z. Graciano-Verdugo. 2017. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydrate Polymers 155: 117–127.CrossRefGoogle Scholar
  66. 66.
    Gullón, B., M.I. Montenegro, A.I. Ruiz-Matute, A. Cardelle-Cobasa, N. Corzo, and M.E. Pintado. 2016. Synthesis, optimization and structural characterization of achitosan–glucose derivative obtained by the Maillard reaction. Carbohydrate Polymers 137: 382–389.CrossRefGoogle Scholar
  67. 67.
    Thulluri, C., S.R. Pinnamaneni, P.R. Shetty, and U. Addepally. 2016. Synthesis of Lignin-based nanomaterials/nanocomposites: Recent trends and future perspectives. Industrial Biotechnology 12: 153–160.CrossRefGoogle Scholar
  68. 68.
    Volkova, N., V. Ibrahim, R. Hatti-Kaul, and L. Wadso. 2012. Water sorption isotherms of Kraft lignin and its composites. Carbohydrate Polymers 87: 1817–1821.CrossRefGoogle Scholar
  69. 69.
    Naseem, A., S. Tabasum, K.M. Zia, M. Zuber, M. Ali, and A. Noreen. 2016. Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules 93: 296–313.CrossRefGoogle Scholar
  70. 70.
    Ma, X., X. Zheng, H. Yang, H. Wu, S. Cao, L. Chen, and L. Huang. 2016. A perspective on lignin effects on hemicelluloses dissolution for bamboo pretreatment. Industrial Crops and Products 94: 117–121.CrossRefGoogle Scholar
  71. 71.
    Kim, S., M.M. Fernandes, T. Matama, A. Loureiro, A.C. Gomes, and A. Cavaco-Paulo. 2013. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications. Colloids and Surfaces B: Biointerfaces 103: 1–8.CrossRefGoogle Scholar
  72. 72.
    Vetrivel, V., K. Rajendran, and V. Kalaiselvi. 2015. Synthesis and characterization of Pure Titanium dioxide nanoparticles by Sol- gel method. International Journal of Chemical Technology Research 7: 1090–1097.Google Scholar
  73. 73.
    Feldman, D. 2016. Lignin nanocomposites. Journal of Macromolecular Science, Part A Pure and Applied Chemistry 53: 382–387.CrossRefGoogle Scholar
  74. 74.
    Bee, A., L. Obeid, R. Mbolantenaina, M. Welschbillig, and D. Talbot. 2017. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. Journal of Magnetism and Magnetic Materials 421: 59–64.CrossRefGoogle Scholar
  75. 75.
    Ngah, W.S.W., S. Fatinathan, and N.A. Yosop. 2011. Isotherm and kinetic studies on the adsorption of humic acid onto chitosan-H2SO4 beads. Desalination 272: 293–300.CrossRefGoogle Scholar
  76. 76.
    Zeng, D., J. Wu, and J.F. Kennedy. 2008. Application of a chitosan flocculant to water treatment. Carbohydrate Polymers 71: 135–139.CrossRefGoogle Scholar
  77. 77.
    Zhou, R., R. Zhou, X. Zhang, S. Tu, Y. Yin, S. Yang, and L. Ye. 2016. An efficient bio-adsorbent for the removal of dye: Adsorption studies and cold atmospheric plasma regeneration. Journal of the Taiwan Institute of Chemical Engineers 68: 372–378.CrossRefGoogle Scholar
  78. 78.
    Richter, A.P., B. Bharti, H.B. Armstrong, J.S. Brown, D. Plemmons, V.N. Paunov, S.D. Stoyanov, and O.D. Velev. 2016. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32: 6468–6477.CrossRefGoogle Scholar
  79. 79.
    Nitayaphat, W., and T. Jintakosol. 2015. Removal of silver(I) from aqueous solutions by chitosan/bamboo charcoal composite beads. Journal of Cleaner Production 87: 850–855.CrossRefGoogle Scholar
  80. 80.
    Wang, X., and C. Wang. 2016. Chitosan-poly(vinyl alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence and adsorption mechanisms. Colloids and Surfaces A: Physicochem. Eng. Aspects 500: 186–194.CrossRefGoogle Scholar
  81. 81.
    Mishra, A.K., and A.K. Sharma. 2011. Synthesis of—cyclodextrin/chitosan composites for the efficient removal of Cd(II) from aqueous solution. International Journal of Biological Macromolecules 49: 504–512.CrossRefGoogle Scholar
  82. 82.
    Okoronkwo, A.E., and S.J. Olusegun. 2013. Biosorption of nickel using unmodified and modified lignin extracted from agricultural waste. Desalination and Water Treatment 51: 1989–1997.CrossRefGoogle Scholar
  83. 83.
    Klapiszewski, L., K. Siwinska-Stefanska, and D. Kolodynska. 2017. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chemical Engineering Journal 314: 169–181.CrossRefGoogle Scholar
  84. 84.
    Khamparia, S., and D.K. Jaspal. 2017. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Environmental Science Engineering 11 (1): 8. doi: 10.1007/s11783-017-0899-5.Google Scholar
  85. 85.
    Choi, C., J. Nam, and J. Nah. 2016. Application of chitosan and chitosan derivatives as biomaterials. Journal of Industrial and Engineering Chemistry 33: 1–10.CrossRefGoogle Scholar
  86. 86.
    Nair, V., A. Panigrahy, and R. Vinu. 2014. Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal 254: 491–502.CrossRefGoogle Scholar
  87. 87.
    Szymczyk, P., U. Filipkowska, T. Jóźwiak, and M. Kuczajowska-Zadrożna. 2015. The use of chitin and chitosan for the removal of Reactive Black 5 dye. Progress on Chemistry and Application of Chitin and its Derivatives, Volume XX. doi: 10.15259/PCACD.20.26.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Thato Masilompane
    • 1
  • Nhamo Chaukura
    • 1
    Email author
  • Ajay K. Mishra
    • 1
  • Shivani B. Mishra
    • 1
  • Bhekie B. Mamba
    • 1
  1. 1.Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and TechnologyUniversity of South AfricaJohannesburgSouth Africa

Personalised recommendations