Skip to main content

Drawing Planar Graphs with Few Geometric Primitives

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

We define the visual complexity of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw two collinear edges of the same vertex). Let n denote the number of vertices of a graph. We show that trees can be drawn with 3n / 4 straight-line segments on a polynomial grid, and with n / 2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with \((8n\,-\,17)/3\) segments on an \(O(n)\,\times \,O(n^2)\) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n / 2 edges on an \(O(n)\,\times \,O(n^2)\) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only \((5n\,-\,11)/3\) arcs. This provides a significant improvement over the lower bound of 2n for line segments for a nontrivial graph class.

The work of P. Kindermann and A. Schulz was supported by DFG grant SCHU 2458/4-1. The work of W. Meulemans was supported by Marie Skłodowska-Curie Action MSCA-H2020-IF-2014 656741.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_89

    Chapter  Google Scholar 

  2. Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. In: Master’s Thesis, Freie Universität Berlin (2000). http://page.math.tu-berlin.de/~felsner/Diplomarbeiten/brehm.ps.gz

  3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_14

    Chapter  Google Scholar 

  4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The complexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_23

    Chapter  Google Scholar 

  5. de Fraysseix, H., de Mendez, P.O.: On topological aspects of orientations. Discrete Math. 229(1–3), 57–72 (2001). https://doi.org/10.1016/S0012-365X(00)00201-6

    Article  MathSciNet  MATH  Google Scholar 

  6. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Simon, J. (ed.) Proceedings of 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 426–433. ACM, 1988. https://doi.org/10.1145/62212.62254

  7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

    Article  MathSciNet  MATH  Google Scholar 

  8. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007). https://doi.org/10.1016/j.comgeo.2006.09.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. In: He, M., Zeh, N. (eds.) Proceedings of 26th Canadian Conference on Computational Geometry (CCCG 2014), Carleton University, pp. 40–45 (2014). http://www.cccg.ca/proceedings/2014/papers/paper06.pdf

  10. Durocher, S., Mondal, D., Nishat, R.I., Whitesides, S.: A note on minimum-segment drawings of planar graphs. J. Graph Algorithms Appl. 17(3), 301–328 (2013). https://doi.org/10.7155/jgaa.00295

    Article  MathSciNet  MATH  Google Scholar 

  11. Felsner, S., Trotter, W.T.: Posets and planar graphs. J. Graph Theory 49(4), 273–284 (2005). https://doi.org/10.1002/jgt.20081

    Article  MathSciNet  MATH  Google Scholar 

  12. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives (2017). Arxiv report 1703.01691. arXiv:1703.01691

  13. Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected graphs with few segments: algorithms and experiments. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 113–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_10

    Chapter  Google Scholar 

  14. Lick, D.R., White, A.T.: \(k\)-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970). https://doi.org/10.4153/CJM-1970-125-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Mondal, D.: Visualizing graphs: optimization and trade-offs. Ph.D. thesis, University of Manitoba (2016). http://hdl.handle.net/1993/31673

  16. Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex drawings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480 (2013). https://doi.org/10.1007/s10878-011-9390-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) Proceedings of 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp 138–148. SIAM (1990). http://dl.acm.org/citation.cfm?id=320191

  18. Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–412 (2015). https://doi.org/10.7155/jgaa.00366

    Article  MathSciNet  MATH  Google Scholar 

  19. Tarjan, R.E.: Linking and cutting trees. In: Data Structures and Network Algorithms, pp. 59–70. SIAM (1983). https://doi.org/10.1137/1.9781611970265.ch5

  20. Wade, G.A., Chu, J.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994). https://doi.org/10.1093/comjnl/37.2.139

    Article  Google Scholar 

  21. Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing. Discrete Comput. Geom. 33(2), 321–344 (2005). https://doi.org/10.1007/s00454-004-1154-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kindermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A. (2017). Drawing Planar Graphs with Few Geometric Primitives. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics