Skip to main content

Linearly \(\chi \)-Bounding \((P_6,C_4)\)-Free Graphs

  • Conference paper
  • First Online:
Book cover Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

Given two graphs \(H_1\) and \(H_2\), a graph G is \((H_1,H_2)\)-free if it contains no subgraph isomorphic to \(H_1\) or \(H_2\). Let \(P_t\) and \(C_s\) be the path on t vertices and the cycle on s vertices, respectively. In this paper we show that for any \((P_6,C_4)\)-free graph G it holds that \(\chi (G)\le \frac{3}{2}\omega (G)\), where \(\chi (G)\) and \(\omega (G)\) are the chromatic number and clique number of G, respectively. Our bound is attained by \(C_5\) and the Petersen graph. The new result unifies previously known results on the existence of linear \(\chi \)-binding functions for several graph classes. Our proof is based on a novel structure theorem on \((P_6,C_4)\)-free graphs that do not contain clique cutsets. Using this structure theorem we also design a polynomial time 3/2-approximation algorithm for coloring \((P_6,C_4)\)-free graphs. Our algorithm computes a coloring with \(\frac{3}{2}\omega (G)\) colors for any \((P_6,C_4)\)-free graph G in \(O(n^2m)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharathi, A.P., Choudum, S.A.: Colouring of \((P_3\cup P_2)\)-free graphs. arXiv:1610.07177v1 [cs.DM] (2016)

  2. Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced \(C_4\) and \(2K_2\). Discrete Math. 115, 51–55 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)

    MATH  Google Scholar 

  4. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight stable set problem. Theor. Comput. Sci. 389, 295–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number of \(2K_2\)-free graphs. In: Bordeaux Graph Workshop (2016)

    Google Scholar 

  6. Choudum, S.A., Karthick, T.: Maximal cliques in \(\{P_2\cup P_3, C_4\}\)-free graphs. Discrete Math. 310, 3398–3403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choudum, S.A., Karthick, T., Shalu, M.A.: Perfectly coloring and linearly \(\chi \)-bound \({P}_6\)-free graphs. J. Graph Theory 54, 293–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choudum, S.A., Karthick, T., Shalu, M.A.: Linear chromatic bounds for a subfamily of \(3K_1\)-free graphs. Graphs Comb. 24, 413–428 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dhanalakshmi, S., Sadagopan, N., Manogna, V.: On \(2K_2\)-free graphs-structural and combinatorial view. arXiv:1602.03802v2 [math.CO] (2016)

  10. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fouquet, J.L., Giakoumakis, V., Maire, F., Thuillier, H.: On graphs without \({P}_5\) and \(\overline{P_5}\). Discrete Math. 146, 33–44 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of coloring graphs with forbidden subgraphs. J. Graph Theory (to appear)

    Google Scholar 

  14. Gyárfás, A.: On Ramsey covering numbers. Coll. Math. Soc. János Bolyai 10, 801–816 (1973)

    MathSciNet  Google Scholar 

  15. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosow. Mat. 19, 413–431 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Henning, M.A., Löwenstein, C., Rautenbach, D.: Independent sets and matchings in subcubic graphs. Discrete Math. 312, 1900–1910 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs-a survey. Graphs Comb. 20, 1–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. J. Combin. Theory Ser. B 29, 345–346 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenwei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaspers, S., Huang, S. (2017). Linearly \(\chi \)-Bounding \((P_6,C_4)\)-Free Graphs. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics