Skip to main content

Leaf Respiration in Terrestrial Biosphere Models

  • Chapter
  • First Online:
Plant Respiration: Metabolic Fluxes and Carbon Balance

Summary

How leaf respiration (R d) is represented in leading terrestrial biosphere models (TBMs ) is reviewed, followed by an overview of how emerging global datasets provide opportunities to improve parameterization of leaf R d in large-scale models. We first outline how TBMs have historically accounted for variations in respiratory CO2 release in mature leaves, using assumed relationships between leaf nitrogen, photosynthetic capacity and R d. The need for TBMs to account for light inhibition of R d in mature leaves is highlighted, followed by a discussion on how R d of upper canopy leaves is used to predict maintenance respiration in whole plants. We then outline how respiratory energy requirements of growth are accounted for in TBMs, pointing out that current assumptions on the costs of biosynthesis are based on theoretical calculations that may not be valid for all plant species and environments. The chapter then considers how improvements might be made to TBMs with respect to the parameterization of leaf R d. We show how recently compiled datasets provide improved capacity to predict global variations in baseline R d measured at a standard temperature, and how baseline R d likely acclimates to sustained changes in growth temperature. Application of this dataset reveals markedly higher rates of leaf R d than currently predicted by TBMs , suggesting that TBMs may be underestimating global plant respiratory CO2 release. The availability of a new, global dataset on short-term temperature responses of leaf R d is highlighted. Analysis of this dataset reveals that leaf R d does not exhibit the exponential response assumed by most TBMs; rather, the temperature-sensitivity declines as leaves warm, with convergence in the temperature-response across biomes and plant functional types . We show how equations derived from these datasets may provide the TBM community with a new framework to improve representation of mature leaf respiration in TBMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams MA, Rennenberg H, Kruse J (2016) Different models provide equivalent predictive power for cross-biome response of leaf respiration to temperature. Proc Natl Acad Sci USA 113:E5993–E5995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta – Bioenerg 1504:58–69

    Article  CAS  Google Scholar 

  • Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA et al (2015) Global-scale environmental control of plant photosynthetic capacity. Ecol Appl 25:2349–2365

    Article  PubMed  Google Scholar 

  • Amthor JS (1989) Respiration and crop productivity. Springer, New York

    Book  Google Scholar 

  • Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    Article  CAS  Google Scholar 

  • Amthor JS, Baldocchi DD (2001) Terrestrial higher plant respiration and net primary production. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity, physiological ecology. Academic, San Diego, pp 33–59

    Chapter  Google Scholar 

  • Armstrong AF, Logan DC, Atkin OK (2006) On the developmental dependence of leaf respiration: responses to short- and long-term changes in growth temperature. Am J Bot 93:1633–1639

    Article  PubMed  Google Scholar 

  • Armstrong AF, Badger MR, Day DA, Barthet MM, Smith PMC, Millar AH, Whelan J, Atkin OK (2008) Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ 31:1156–1169

    Article  CAS  PubMed  Google Scholar 

  • Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, Martinez P (2014) Amazonian functional diversity from forest canopy chemical assembly. Proc Natl Acad Sci USA 111:5604–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Westbeek MHM, Cambridge ML, Lambers H, Pons TL (1997) Leaf respiration in light and darkness. A comparison of slow- and fast-growing Poa species. Plant Physiol 113:961–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000a) Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol 122:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin OK, Holly C, Ball MC (2000b) Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. Plant Cell Environ 23:15–26

    Article  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unraveling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Article  Google Scholar 

  • Atkin OK, Scheurwater I, Pons TL (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob Change Biol 12:500–515

    Article  Google Scholar 

  • Atkin OK, Scheurwater I, Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol 174:367–380

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford J, Woodward FI, Hurry V (2008) Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Global Change Biol 14:2709–2726

    Google Scholar 

  • Atkin OK, Turnbull MH, Zaragoza-Castells J, Fyllas NM, Lloyd J, Meir P, Griffin KL (2013) Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: an analysis using the Kok method. Plant Soil 367:163–182

    Article  CAS  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol 190:1003–1018

    Article  PubMed  Google Scholar 

  • Ayub G, Zaragoza-Castells J, Griffin KL, Atkin OK (2014) Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO2 concentrations. Plant Sci 226:120–130

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Bieto J, Lambers H, Day DA (1983) Respiratory properties of developing bean and pea leaves. Aust J Plant Physiol 10:237–245

    Article  Google Scholar 

  • Bahar NH, Ishida FY, Weerasinghe LK, Guerrieri R, O’Sullivan OS, Bloomfield KJ et al (2017) Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol 214:1002–1018

    Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco- limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bolstad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976

    Article  Google Scholar 

  • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Change Biol 9:1543–1566

    Article  Google Scholar 

  • Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S et al (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002

    Article  CAS  Google Scholar 

  • Bouma T (2005) Understanding plant respiration: separating respiratory components versus a process-based approach. In: Lambers H, Ribas-Carbó M (eds) Plant respiration from cell to ecosystem. Springer, Dordrecht, pp 177–194

    Google Scholar 

  • Bouma TJ, Devisser R, Janssen JHJA, Dekock MJ, Vanleeuwen PH, Lambers H (1994) Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol Plant 92:585–594

    Article  CAS  Google Scholar 

  • Bouma TJ, De VR, Van LPH, De KMJ, Lambers H (1995) The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J Exp Bot 46:1185–1194

    Article  CAS  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-biphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas exchange measurements on spinach. Planta 165:397–406

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D (2002) Plant respiration and climate change effects. University of Copenhagen, Copenhagen

    Google Scholar 

  • Bruhn D, Mikkelsen TN, Herbst M, Kutsch WL, Ball MC, Pilegaard K (2011) Estimating daytime ecosystem respiration from eddy-flux data. Biosystems 103:309–313

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Adams MA (2011) An analytical model of non-photorespiratory CO2 release in the light and dark in leaves of C3 species based on stoichiometric flux balance. Plant Cell Environ 34:89–112

    Article  CAS  PubMed  Google Scholar 

  • Budde RJA, Randall DD (1990) Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc Natl Acad Sci USA 87:673–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H-H, Barnes RL (1977) Photosynthate allocation in Pinus taeda. I. Substrate requirements for synthesis of shoot biomass. Can J For Res 7:106–111

    Article  CAS  Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ et al (2011) The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geosci Mod Dev 4:701–722

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiratio: a model that includes a laminar boundary layer. Agric For Met 54:107–136

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Agric For Met 54:107–136

    Article  Google Scholar 

  • Cornelissen JHC, Werger MJA, Castrodiez P, Van Rheenen JWA, Rowland AP (1997) Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111:460–469

    Article  CAS  PubMed  Google Scholar 

  • Cox P (2001) Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre, Met Office, Bracknell

    Google Scholar 

  • Cox PM, Huntingford C, Harding RJ (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212:79–94

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dynam 15:183–203

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Criddle RS, Hopkin MS, McArthur ED, Hansen LD (1994) Plant distribution and the temperature coefficient of metabolism. Plant Cell Environ 17:233–243

    Article  Google Scholar 

  • Crous KY, Zaragoza-Castells J, Low M, Ellsworth DS, Tissue DT, Tjoelker MG et al (2011) Seasonal acclimation of leaf respiration in Eucalyptus saligna trees: impacts of elevated atmospheric CO2 and summer drought. Glob Change Biol 17:1560–1576

    Article  Google Scholar 

  • Crous KY, Zaragoza-Castells J, Ellsworth DS, Duursma RA, Low M, Tissue DT, Atkin OK (2012) Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought. Plant Cell Environ 35:966–981

    Article  CAS  PubMed  Google Scholar 

  • Dahlin KM, Asner GP, Field CB (2013) Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc Natl Acad Sci USA 110:6895–6900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 499–587

    Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  CAS  Google Scholar 

  • Dietze MC, Serbin SP, Davidson C, Desai AR, Feng XH, Kelly R et al (2014) A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. J Geophys Res Biogeosci 119:286–300

    Article  Google Scholar 

  • Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F et al (2010) Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ 33:959–980

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Tjoelker MG, Aspinwall MJ, Reich PB, Barton CVM, Medlyn BE, Duursma RA (2016) Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? New Phytol 211:850–863

    Article  CAS  PubMed  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Evans JR, Schortemeyer M, McFarlane N, Atkin OK (2000) Photosynthetic characteristics of 10 Acacia species grown under ambient and elevated atmospheric CO2. Aust J Plant Physiol 27:13–25

    CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Mooney HA (1986) The photosynthetic-nitrogen relationship in wild plants. In: Givnish T (ed) On the economy of form and function. Cambridge University Press, Cambridge, pp 22–55

    Google Scholar 

  • Fisher JB, Huntzinger DN, Schwalm CR, Sitch S (2014) Modeling the terrestrial biosphere. Ann Rev Env Res 39:91–123

    Article  Google Scholar 

  • Flexas J, Galmés J, Ribas-Carbó M, Medrano H, Lambers H (2005) The effects of water stress on plant respiration. In: Govindjee (ed) Volume 18 plant respiration: from cell to ecosystem. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 85–94

    Chapter  Google Scholar 

  • Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Forward DF (1960) Effect of temperature on respiration. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 12. Springer, Berlin, pp 234–258

    Google Scholar 

  • Fredeen AL, Field CB (1991) Leaf respiration in Piper species native to a Mexican rainforest. Physiol Plant 82:85–92

    Article  Google Scholar 

  • Fukai S, Silsbury JH (1977) Responses of subterranean clover communities to temperature. II. Effects of temperature on dark respiration rate. Aust J Plant Physiol 4:159–167

    Article  CAS  Google Scholar 

  • Gauthier PPG, Bligny R, Gout E, Mahe A, Nogues S, Hodges M, Tcherkez GGB (2010) In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus. New Phytol 185:988–999

    Article  CAS  PubMed  Google Scholar 

  • Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex. Role of photorespiratory carbon metabolism. Plant Physiol 100:908–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Gonzelez-Meler MA, Taneva L, Trueman RJ (2004) Plant respiration and elevated atmospheric CO2 concentration: Cellular responses and global significance. Ann Bot 94:647–656

    Article  CAS  Google Scholar 

  • Griffin KL, Turnbull MH (2013) Light saturated RuBP oxygenation by Rubisco is a robust predictor of light inhibition of respiration in Triticum aestivum L. Plant Biol 1:1438–8677

    Google Scholar 

  • Hachiya TAKU, Terashima ICHI, Noguchi KO (2007) Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia x hybrida petals. Plant Cell Environ 30:1269–1283

    Article  CAS  PubMed  Google Scholar 

  • Harley PC, Thomas RB, Reynolds J (1992) Modeling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Harper AB, Cox PM, Friedlingstein P, Wiltshire AJ, Jones CD, Sitch S et al (2016) Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geosci Model Dev 9:2415–2440

    Article  Google Scholar 

  • Harrison MT, Edwards EJ, Farquhar GD, Nicotra AB, Evans JR (2009) Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Environ 32:259–270

    Article  CAS  PubMed  Google Scholar 

  • Haxeltine A, Prentice IC (1996a) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob Biogeochem Cycles 10:693–709

    Article  CAS  Google Scholar 

  • Haxeltine A, Prentice IC (1996b) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Article  Google Scholar 

  • Hay RKM, Walker AJ (1989) An introduction to the physiology of crop yield. Longman Scientific and Technical, White Plains

    Google Scholar 

  • Heskel MA, Anderson OR, Atkin OK, Turnbull MH, Griffin KL (2012) Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two arctic tundra species. Am J Bot 99:1702–1714

    Article  CAS  PubMed  Google Scholar 

  • Heskel MA, Atkin OK, Turnbull MH, Griffin KL (2013) Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4:art98

    Article  Google Scholar 

  • Heskel MA, Bitterman D, Atkin OK, Turnbull MH, Griffin KL (2014) Seasonality of foliar respiration in two dominant plant species from the Arctic tundra: response to long-term warming and short-term temperature variability. Funct Plant Biol 41:287–300

    Article  Google Scholar 

  • Heskel MA, Atkin OK, O’Sullivan OS, Reich P, Tjoelker MG, Weerasinghe LK et al (2016a) Reply to Adams et al.: Empirical versus process-based approaches to modeling temperature responses of leaf respiration. Proc Natl Acad Sci USA 113:E5996–E5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A et al (2016b) Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Natl Acad Sci USA 113:3832–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hill SA, Bryce JH, Lambers H, van der Plas LHW (1992) Malate metabolism and light-enhanced dark respiration in barley mesophyll protoplasts. In: Molecular, biochemical and physiological aspects of plant respiration. SPB Academic Publishing BV, The Hague, pp 221–230

    Google Scholar 

  • Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta-Bioenerg 1366:235–255

    Article  CAS  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Romanowska E, Gardeström P (2001) Photorespiratory flux and mitochondrial contribution to energy and redox balance of barley leaf protoplasts in the light and during light-dark transitions. J Plant Physiol 158:1325–1332

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • James WO (1953) Plant respiration. Clarendon Press, Oxford

    Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–278

    Article  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Change Biol 15:976–991

    Article  Google Scholar 

  • King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312:536–537

    Article  CAS  PubMed  Google Scholar 

  • Knorr W (1997) Satellite remote sensing and modeling of the global CO2 exchange of land vegetation: a synthesis study. Max-Planck-Institut fur Meteorologie, Hamburg

    Google Scholar 

  • Knorr W (2000) Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties. Glob Ecol Biogeog 9:225–252

    Article  Google Scholar 

  • Kornfeld ARI, Horton TW, Yakir DAN, Searle SY, Griffin KL, Atkin OK, Subke J-A, Turnbull MH (2012) A field-compatible method for measuring alternative respiratory pathway activities in vivo using stable O2 isotopes. Plant Cell Environ 35:1518–1532

    Article  CAS  PubMed  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cy 19:GB1015

    Article  CAS  Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 46:45–70

    Article  Google Scholar 

  • Krömer S, Stitt M, Heldt HW (1988) Mitochondrial oxidative phosphorylation participating in photosynthetic metabolism of a leaf cell. FEBS Lett 226:352–356

    Article  Google Scholar 

  • Kruse J, Adams MA (2008) Three parameters comprehensively describe the temperature response of respiratory oxygen reduction. Plant Cell Environ 31:954–967

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Rennenberg H, Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189:659–677

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Alfarraj S, Rennenberg H, Adams M (2016) A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis. Photosyn Res 129:43–58

    Article  CAS  PubMed  Google Scholar 

  • Lambers H (1985) Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, higher plant cell respiration, vol 18. Springer, New York, pp 417–473

    Google Scholar 

  • Larcher W (2004) Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer, Berlin

    Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252

    Article  Google Scholar 

  • Lechowicz MJ, Hellens LE, Simon JP (1980) Latitudinal trendds in the responses of growth respiration and maintenance respiration to temperature in the beach pea, Lathyrus japonicus. Can J Bot 58:1521–1524

    Article  Google Scholar 

  • Lee TD, Reich PB, Bolstad PV (2005) Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct Ecol 19:640–647

    Article  Google Scholar 

  • Leuzinger S, Thomas RQ (2011) How do we improve Earth system models? Integrating Earth system models, ecosystem models, experiments and long-term data. New Phytol 191:15–18

    Article  PubMed  Google Scholar 

  • Liang J, Xia J, Liu L, Wan S (2013) Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. J Plant Ecol 6:437–447

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lloyd J, Wong S, Styles J, Batten D, Priddle R, Turnbull C, Mcconchie C (1995) Measuring and modeling whole-tree gas exchange. Funct Plant Biol 22:987–1000

    Google Scholar 

  • Lloyd J, Patiño S, Paiva RQ, Nardoto GB, Quesada CA, Santos AJB et al (2010) Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7:1833–1859

    Article  CAS  Google Scholar 

  • Lombardozzi DL, Bonan GB, Smith NG, Dukes JS, Fisher RA (2015) Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophys Res Lett 42:8624–8631

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V, Di Marco G (2001) Respiration in the light measured by CO2-12C emission in CO2-13C atmosphere in maize leaves. Aust J Plant Physiol 28:1103–1108

    Google Scholar 

  • McCree KJ (1974) Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. Crop Sci 14:509–514

    Article  Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B, Vorosmarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetaion in North America. Glob Biochem Cycles 6:101–124

    Article  CAS  Google Scholar 

  • McLaughlin BC, Xu CY, Rastetter EB, Griffin KL (2014) Predicting ecosystem carbon balance in a warming Arctic: the importance of long-term thermal acclimation potential and inhibitory effects of light on respiration. Glob Change Biol 20:1901–1912

    Article  Google Scholar 

  • Meir P, Grace J, Miranda AC (2001) Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature. Funct Ecol 15:378–387

    Article  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25(3):343–357

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Mercado LM, Huntingford C, Gash JHC, Cox PM, Jogireddy V (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Ser B-Chem Phys Meteor 59:553–565

    Article  CAS  Google Scholar 

  • Metherell AK, Harding LA, Cole CV, Parton WJ (1996) CENTURY Soil Organic Matter Model Environment. Technical Documentation. Agroecosystem Version 4.0. Great Plains System Research Unit Technical Report No. 4. USDA-ARS. Accessed 15 Sept 2016

    Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Ann Rev Plant Biol 62:79–104

    Article  CAS  Google Scholar 

  • Nagel JM, Griffin KL, Schuster WS, Tissue DT, Turnbull MH, Brown KJ, Whitehead D (2002) Energy investment in leaves of red maple and co-occurring oaks within a forested watershed. Tree Physiol 22:859–867

    Article  PubMed  Google Scholar 

  • Nelson CJ, Alexova R, Jacoby RP, Millar AH (2014) Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol 166:91–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niinemets U, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Yamori W, Hikosaka K, Terashima I (2015) Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytol 207:34–42

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan OS, Weerasinghe KWLK, Evans JR, Egerton JJG, Tjoelker MG, Atkin OK (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ 36:1268–1284

    Article  PubMed  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Kovan CD, …, Yang Z-L (2013) Technical Description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR. Boulder, CO

    Google Scholar 

  • Paembonan SA, Hagihara A, Hozumi K (1991) Long-term measurement of CO2 release from the above-ground parts of a Hinoki forest tree in relation to air temperature. Tree Physiol 8:399–405

    Article  Google Scholar 

  • Pärnik T, Keerberg O (1995) Decarboxylation of primary and end-products of photosynthesis at different oxygen concentrations. J Exp Bot 46:1439–1447

    Article  Google Scholar 

  • Pärnik T, Ivanova H, Keerberg O (2007) Photorespiratory and respiratory decarboxylations in leaves of C3 plants under different CO2 concentrations and irradiances. Plant Cell Environ 30:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    Article  CAS  Google Scholar 

  • Penning de Vries FWT, Van Laar HH, Chardon MCM (1983) Bioenergeties of growth of seeds, fruits, and storage organs. In: Proceedings of the symposium on potential productivity of field crops under different environments, 23–26 September 1980, IRRI, Manila, Phillipines. International Riee Researeh Institute, Los Banos, pp 37–59

    Google Scholar 

  • Piao SL, Luyssaert S, Ciais P, Janssens IA, Chen AP, Cao C et al (2010) Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91:652–661

    Article  PubMed  Google Scholar 

  • Pinelli P, Loreto F (2003) (CO2)-C-12 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. J Exp Bot 54:1761–1769

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant pespiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Pons TL, Welschen RAM (2002) Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ 25:1367–1372

    Article  Google Scholar 

  • Pons TL, Welschen RAM (2003) Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora : contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol 23:937–947

    Article  CAS  PubMed  Google Scholar 

  • Pons TL, Westbeek MHM (2004) Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species. Physiol Plant 122:68–78

    Article  CAS  Google Scholar 

  • Poorter H, Bergkotte M (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ 15:221–229

    Article  CAS  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116:26–37

    Article  PubMed  Google Scholar 

  • Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Korner C (2006) Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J Exp Bot 57:355–371

    Article  CAS  PubMed  Google Scholar 

  • Prentice IC, Cowling SA (2013) Dynamic global vegetation models. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd edn. Academic, Waltham, pp 670–689

    Chapter  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ et al (2001) The carbon cycle and atmospheric carbon dioxide. In: JTHe a (ed) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 183–237

    Google Scholar 

  • Raghavendra AS, Padmasree K, Saradadevi K (1994) Interdependence of photosynthesis and respiration in plant cells – interactions between chloroplasts and mitochondria. Plant Sci 97:1–14

    Article  CAS  Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B, Vorosmarty CJ (1991) Potential net primary productivity in South America – application of a global model. Ecol Appl 1:399–429

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondrial. Ann Rev Plant Biol 55:23–39

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J, Tjoelker MG (1996) Needle respiration and nitrogen concentration in scots pine populations from a broad latitudinal range – a common garden test with field-grown trees. Funct Ecol 10:768–776

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: Global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801

    Article  PubMed  Google Scholar 

  • Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016) Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:633–636

    Article  CAS  PubMed  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439

    Article  Google Scholar 

  • Robson MJ (1981) Respiratory efflux in relation to temperature of simulated swards of perennial ryegrass with contrasting soluble carbohydrate contents. Ann Bot 48:269–273

    Article  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Atkin OK, Robson TM, Zaragoza-Castells J, Gil L, Aranda I (2010) Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. Tree Physiol 30:214–224

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Shahin O, del Rey MD, Rambal S (2011) Opposite changes in leaf dark respiration and soluble sugars with drought in two Mediterranean oaks. Funct Plant Biol 38:1004–1015

    Article  CAS  Google Scholar 

  • Rowland L, Zaragoza-Castells J, Bloomfield KJ, Turnbull MH, Bonal D, Burban B et al (2016) Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol doi. https://doi.org/10.1111/nph.13992

  • Ruimy A, Dedieu G, Saugier B (1996) TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob Biogeochem Cycles 10:269–285

    Article  CAS  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Mod 42:125–154

    Article  CAS  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1(2):157–167

    Article  PubMed  Google Scholar 

  • Ryan MG (1995) Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ 18:765–772

    Article  CAS  Google Scholar 

  • Ryan MG (2002) Canopy processes research. Tree Physiol 22:1035–1043

    Article  PubMed  Google Scholar 

  • Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition – a global ecology scaling exercise. Ann Rev Ecol System 25:629–660

    Article  Google Scholar 

  • Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I et al (2010) A model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J Geophys Res Biogeosci 115. https://doi.org/10.1029/2009JG001229

  • Searle SY, Bitterman DS, Thomas S, Griffin KL, Atkin OK, Turnbull MH (2011a) Respiratory alternative oxidase responds to both low- and high-temperature stress in Quercus rubra leaves along an urban–rural gradient in New York. Funct Ecol 25:1007–1017

    Article  Google Scholar 

  • Searle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH (2011b) Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytol 189:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004) Response of Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen availability and temperature. New Phytol 162:377–386

    Article  CAS  Google Scholar 

  • Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis: light partially inhibits dark respiration. Plant Physiol 75:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL et al (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14:2015–2039

    Article  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Slot M, Wright SJ, Kitajima K (2013) Foliar respiration and its temperature sensitivity in trees and lianas: in situ measurements in the upper canopy of a tropical forest. Tree Physiol 33:505–515

    Article  PubMed  Google Scholar 

  • Slot M, Rey-Sánchez C, Winter K, Kitajima K (2014) Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Funct Ecol 28:1074–1086

    Article  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 19:45–63

    Article  Google Scholar 

  • Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci USA 103:19587–19592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetlove LJ, Williams TCR, Cheung CYM, Ratcliffe RG (2013) Modeling metabolic CO2 evolution – a fresh perspective on respiration. Plant Cell Environ 36:1631–1640

    Article  CAS  PubMed  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Tcherkez G, Cornic G, Bligny R, Gout E, Ghashghaie J (2005) In vivo respiratory metabolism of illuminated leaves. Plant Physiol 138:1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahe A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci USA 105:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Boex-Fontvieille E, Mahe A, Hodges M (2012) Respiratory carbon fluxes in leaves. Curr Opin Plant Biol 15(3):308–314

    Article  CAS  PubMed  Google Scholar 

  • Thomas RB, Griffin KL (1994) Direct and indirect effects of atmospheric carbon dioxide enrichment on leaf respiration of Glycine max (L.) merr. Plant Physiol 104:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornley JHM (1970) Respiration, growth and maintenance in plants. Nature 227:304–305

    Article  CAS  PubMed  Google Scholar 

  • Thornley JHM (2011) Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative. Ann Bot 108:1365–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Modeling the components of plant respiration: representation and realism. Ann Bot 85:55–67

    Article  CAS  Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Met 113:185–222

    Article  Google Scholar 

  • Thornton PE, Running SW, Hunt ER (2005) Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1. ORNL Distributed Active Archive Center

    Google Scholar 

  • Tjoelker MG, Reich PB, Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modeling respiration of vegetation: evidence for a general temperature-dependent Q 10. Glob Change Biol 7:223–230

    Article  Google Scholar 

  • Van Arendonk JJCM, Poorter H (1994) The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17:963–970

    Article  CAS  Google Scholar 

  • Vanderwel MC, Slot M, Lichstein JW, Reich PB, Kattge J, Atkin OK et al (2015) Global convergence in projected leaf respiration from estimates of thermal acclimation across time and space. New Phytol 207:1026–1037

    Article  PubMed  Google Scholar 

  • Vertregt N, Penning de Vries FWT (1987) A rapid method for determining the efficiency of biosynthesis of plant biomass. J Theor Biol 128:109–119

    Article  Google Scholar 

  • Villar R, Held AA, Merino J (1995) Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species. Plant Physiol 107:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villar RAFA, Robleto JR, De Jong YVON, Poorter HEND (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF et al (2014) The relationship of leaf photosynthetic traits – V cmax and J max – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol Evol 4:3218–3235

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XZ, Lewis JD, Tissue DT, Seemann JR, Griffin KL (2001) Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. Proc Natl Acad Sci USA 98:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren CR, Adams MA (2004) What determines rates of photosynthesis per unit nitrogen in Eucalyptus seedlings? Funct Plant Biol 31:1169–1178

    Article  CAS  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.] Glob Change Biol 14:624–636

    Article  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosyn Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Way DA, Holly C, Bruhn D, Ball MC, Atkin OK (2015) Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora. Tree Physiol 35:840–849

    Article  CAS  PubMed  Google Scholar 

  • Weerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, Turnbull MH, Atkin OK (2014) Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol 34:564–584

    Article  CAS  PubMed  Google Scholar 

  • Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:680–683

    Article  CAS  PubMed  Google Scholar 

  • White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME–BGC Terrestrial Ecosystem Model: net primary production controls. Earth Interact 4:1–85

    Article  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734

    CAS  Google Scholar 

  • Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A (2005) Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Met 130:13–25

    Article  Google Scholar 

  • Woodward FI, Lomas MR (2004) Vegetation dynamics – simulating responses to climatic change. Biol Rev 79:643–670

    Article  CAS  PubMed  Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Glob Biogeochem Cycles 9:471–490

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Atkin OK, Lusk CH, Tjoelker MG, Westoby M (2006) Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytol 169:309–319

    Article  CAS  PubMed  Google Scholar 

  • Wythers KR, Reich PB, Bradford JB (2013) Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. J Geophys Res Biogeosci 118:77–90

    Article  Google Scholar 

  • Zaehle S, Friend AD (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob Biogeochem Cycles 24:GB1005

    Google Scholar 

  • Zaragoza-Castells J, Sanchez-Gomez D, Valladares F, Hurry V, Atkin OK (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza-Castells J, Sanchez-Gomez D, Hartley IP, Matesanz S, Valladares F, Lloyd J, Atkin OK (2008) Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of acclimation in both high-light and shaded habitats. Funct Ecol 22:172–184

    Google Scholar 

  • Ziehn T, Kattge KW, Scholze M (2011) Improving the predictability of global CO2 assimilation rates under climate change. Geophys Res Lett 38. https://doi.org/10.1029/2011gl047182

Download references

Acknowledgements

This work was funded the Australian Research Council grants/fellowships (DP130101252, CE140100008) to OKA, and USA National Science Foundation International Polar Year Grant to KLG. AM and CH acknowledge the CEH National Capability fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen K. Atkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atkin, O.K. et al. (2017). Leaf Respiration in Terrestrial Biosphere Models. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_6

Download citation

Publish with us

Policies and ethics