Skip to main content

Respiratory Metabolism in CAM Plants

  • Chapter
  • First Online:
Plant Respiration: Metabolic Fluxes and Carbon Balance

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 43))

Summary

CAM metabolism involves a CO2 concentration mechanism in which organic acids are used as transitory carbon storage. The substrate on which CO2 is fixed derives from sugars via glycolysis. Therefore, CAM metabolism is intrinsically linked to enzymatic steps of catabolism and respiration. Respiration is essential to recycle products of malate metabolism (pyruvate) or to provide energy and reductive power sustaining malate synthesis and accumulation. Despite this importance, many aspects of CAM respiration are not well known, including flux quantitation, regulation and possible alternative pathways. The present Chapter summarizes key concepts and known enzymatic actors and emphasizes the need for a greater precision in CAM respiratory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnelle DR, O’Leary MH (1992) Binding of carbon dioxide to phosphoenolpyruvate carboxykinase deduced from carbon kinetic isotope effects. Biochemistry 31:4363–4368

    Article  CAS  PubMed  Google Scholar 

  • Arron GP, Spalding MH, Edwards GE (1979) Isolation and oxidative properties of intact mitochondria from the leaves of Sedum praealtum: a Crassulacean Acid Metabolism plant. Plant Physiol 64:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black CC, Chen JQ, Doong RL, Angelov MN, Sung SJS (1996) Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism: biochemistry, ecophysiology and evolution. Spinger, Berlin, pp 31–45

    Chapter  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J Exp Bot 55:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W, Chen L-J, He Y, Xu Q, Bian C et al (2014) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  PubMed  Google Scholar 

  • Chen L-S, Lin Q, Nose A (2002) A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata. J Exp Bot 53:341–350

    Article  CAS  PubMed  Google Scholar 

  • Cheung CYM, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2014) A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and Crassulacean Acid Metabolism leaves. Plant Physiol 165:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17:935–944

    Article  CAS  Google Scholar 

  • Cushman JC, Tillett RL, Wood JA, Branco JM, Schlauch KA (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894

    Article  CAS  PubMed  Google Scholar 

  • Davis SC, LeBauer DS, Long SP (2014) Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions. J Exp Bot 65:3471–3478

    Article  PubMed  Google Scholar 

  • Edens WA, Urbauer JL, Cleland WW (1997) Determination of the chemical mechanism of malic enzyme by isotope effects. Biochemistry 36:1141–1147

    Article  CAS  PubMed  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1990) Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia. Oecologia 85:108–114

    Article  CAS  PubMed  Google Scholar 

  • Gardeström P, Edwards G (1985) Leaf mitochondria (C3 + C4 + CAM). In: Douce R, Day D (eds) Encyclopedia of plant physiology, higher plant cell respiration, vol 18. Springer, Göttingen, pp 314–346

    Chapter  Google Scholar 

  • Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud GS (2011) A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples. New Phytol 191:579–588

    Article  CAS  PubMed  Google Scholar 

  • Gilbert A, Silvestre V, Robins RJ, Remaud GS, Tcherkez G (2012) Biochemical and physiological determinants of intramolecular isotope patterns in sucrose from C3, C4 and CAM plants accessed by isotopic 13C NMR spectrometry: a viewpoint. Nat Prod Rep 29:476

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H (1988) Carbon balance during CAM: an assessment of respiratory CO2 recycling in the epiphytic bromeliads Aechmea nudicaulis and Aechmea fendleri. Plant Cell Environ 11:603–611

    Article  CAS  Google Scholar 

  • Griffiths H (1990) The regulation of CAM and respiratory recycling by water supply and light regime in the C3-CAM intermediate Sedum telephium. Funct Ecol 4:33–39

    Article  Google Scholar 

  • Griffiths H, Lüttge U, Stimmel K-H, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant Cell Environ 9:385–393

    Article  Google Scholar 

  • Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179:115–122

    Article  CAS  PubMed  Google Scholar 

  • Holtum J, Osmond C (1981) The Gluconeogenic metabolism of pyruvate during deacidification in plants with Crassulacean Acid Metabolism. Aust J Plant Physiol 8:31–44

    Article  CAS  Google Scholar 

  • Hong HTK, Nose A, Agarie S (2004) Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. J Exp Bot 55:2201–2211

    Article  CAS  PubMed  Google Scholar 

  • Kenyon WH, Severson RF, Black CCJ (1985) Maintenance carbon cycle in Crassulacean Acid Metabolism plant leaves. Plant Physiol 77:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Hong HT, Nose A, Agarie S, Yoshida T (2008) Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III. J Exp Bot 59:1819–1827

    Article  Google Scholar 

  • Lüttge U (1988) Day-night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant Cell Environ 11:445–451

    Article  Google Scholar 

  • Lüttge U (1996) Clusia: plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: Winter K, Smith J (eds) Crassulacean Acid Metabolism: biochemistry, ecophysiology and evolution. Springer, Berlin, pp 296–311

    Chapter  Google Scholar 

  • Lüttge U, Ball E (1987) Dark respiration of CAM plants. Plant Physiol Biochem 25:3–10

    Google Scholar 

  • Nobel PS (1996) High productivity of certain agronomic CAM species. In: Winter K, Smith J (eds) Crassulacean Acid Metabolism: biochemistry, ecophysiology and evolution. Springer, Berlin, pp 255–265

    Chapter  Google Scholar 

  • Nobel PS, Bobichi EG (2002) Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment. Ann Bot 90:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Huang B, Garcia-Moya E (1993) Root distribution, growth, respiration, and hydraulic conductivity for two highly productive Agaves. J Exp Bot 44:747–754

    Article  Google Scholar 

  • Osmond C, Allaway W (1974) Pathways of CO2 fixation in the CAM plant Kalanchoe daigremontiana. I patterns of 14CO2 fixation in the light. Aust J Plant Physiol 1:503

    Article  CAS  Google Scholar 

  • Osmond CB, Popp M, Robinson SA (1996) Stoichiometric nightmares: studies of photosynthetic O2 and CO2 exchanges in CAM plants. In: Winter K, Smith J (eds) Crassulacean Acid Metabolism: biochemistry, ecophysiology and evolution. Springer, Berlin, pp 19–30

    Chapter  Google Scholar 

  • Patel A, Ting IP (1987) Relationship between respiration and CAM-cycling in Peperomia camptotricha. Plant Physiol 84:640–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peckmann K, Von Willert DJ, Martin CE, Herppich WB (2012) Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C3 succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways. J Exp Bot 63:2909–2919

    Article  CAS  PubMed  Google Scholar 

  • Penning de Vries FWT, Jansen DM, Ten Berge HFM, Bakema A (1989) Simulation of ecophysiological processes of growth in several annual crops. Pudoc, Wageningen

    Google Scholar 

  • Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA (1992) Measurements of the engagement of cyanide-resistant respiration in the Crassulacean Acid Metabolism plant Kalanchoe daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol 100:1087–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustin P, Lance C (1986) Malate, metabolism in leaf Mitochondria from the Crassulacean Acid Metabolism plant Kalanchoë blossfeldiana Poelln. Plant Physiol 81:1039–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakeel SN, Aman S, Haq NU, Heckathorn SA, Luthe D (2013) Proteomic and transcriptomic analyses of Agave americana in response to heat stress. Plant Mol Biol Report 31:840–851

    Article  CAS  Google Scholar 

  • Sutton BG, Osmond CB (1972) Dark fixation of CO2 by Crassulacean plants: evidence for a single carboxylation step. Plant Physiol 50:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viola RE (2000) L-aspartase: new tricks from an old enzyme. Adv Enzymol Relat Areas Mol Biol 74:295–341

    CAS  PubMed  Google Scholar 

  • von Willert DJ, Schwöbel H (1978) Changes in mitochondria substrate oxidation during development of a Crassulacean acid metabolism. In: Ducet G, Lance C (eds) Plant mitochondria, developments in plant biology, vol 1. Elsevier, Amsterdam, pp 403–410

    Google Scholar 

  • Winter K, Smith J (1996) Crassulacean acid metabolism: current status and perspectives. In: Winter K, Smith J (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Springer, Berlin, pp 389–426

    Chapter  Google Scholar 

  • Zhang J, Liu J, Ming R (2014) Genomic analyses of the CAM plant pineapple. J Exp Bot 65:3395–3404

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present Chapter has been written with the financial support of the Australian Research Council (project contract FT140100645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Tcherkez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tcherkez, G. (2017). Respiratory Metabolism in CAM Plants. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_11

Download citation

Publish with us

Policies and ethics