Skip to main content

Hypoxic Respiratory Metabolism in Plants: Reorchestration of Nitrogen and Carbon Metabolisms

  • Chapter
  • First Online:
Plant Respiration: Metabolic Fluxes and Carbon Balance

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 43))

Summary

Hypoxia is a rather common phenomenon in plants that occurs naturally during development (e.g. in inner seed tissues) or due to adverse environmental conditions (waterlogging in crops). However, the specific metabolic and molecular responses to hypoxia have been disentangled only recently. Quite generally, oxygen shortage impacts on energy generation by mitochondrial metabolism. There is a conserved transcriptional response orchestrated by the so-called N end rule pathway (NERP ) of proteolysis for oxygen sensing and signaling in plants. Downstream events include a deep reconfiguration of carbon metabolism that nicely illustrates the role played by biochemical enzymatic regulation as an indirect oxygen-sensing system responsible for changes in fluxes of the tricarboxylic acid (TCA) cycle, glycolysis and fermentation. Hypoxia has consequences not only for primary carbon metabolism but also for nitrogen metabolism. In fact, adaptive respiratory responses to low oxygen constraints nitrate assimilation and transaminations , and are coupled to the metabolism of nitric oxide , an endogenous signaling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 1504:58–69

    Article  CAS  PubMed  Google Scholar 

  • Allegre A, Silvestre J, Morard P, Kallerhoff J, Pinelli E (2004) Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. J Exp Bot 55:2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Antonio C, Papke C, Rocha M, Diab H, Limami AM, Obata T, Fernie AR, van Dongen JT (2016) Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol 170:43–56

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress – recent advances. Plant Cell Environ 37:2211–2215

    PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F et al (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    Article  CAS  PubMed  Google Scholar 

  • Barta AL (1987) Supply and partitioning of assimilates to roots of Medicago sativa L. and Lotus corniculatus L. under anoxia. Plant Cell Environ 10:151–156

    CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H (2007) Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol 176:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501

    Article  CAS  PubMed  Google Scholar 

  • Botrel A, Magné C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonia assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of a-Ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030–1043

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27:33–39

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195:32–39

    Article  CAS  PubMed  Google Scholar 

  • Diab H, Limami AM (2016) Reconfiguration of N metabolism upon hypoxia stress and recovery: roles of alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH). Plants 5(2):25

    Article  PubMed Central  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Else MA, Tiekstra AE, Croker SJ, Davies WJ, Jackson MB (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiol 112:239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Sakata A, Maeshima M, Tsukaya H (2012) Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant Signal Behav 7:38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner PR, Costantino G, Szabo C, Salzman AL (1997) Nitric oxide sensitivity of the aconitases. J Biol Chem 272:25071–25076

    Article  CAS  PubMed  Google Scholar 

  • Gasch P, Fundinger M, Muller JT, Lee T, Bailey-Serres J, Mustroph A (2016) Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-Motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 28:160–180

    CAS  PubMed  Google Scholar 

  • Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    Article  CAS  PubMed  Google Scholar 

  • Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW et al (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassini P, Indaco GV, Pereira ML, Hall AJ, Trápani N (2007) Responses to short-term waterlogging during grain filling in sunflower. Field Crop Res 101:352–363

    Article  Google Scholar 

  • Gray GR, Maxwell DP, Villarimo AR, McIntosh L (2004) Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23:497–503

    Article  CAS  PubMed  Google Scholar 

  • Guglielminetti L, Yamaguchi J, Perata P, Alpi A (1995) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol 109:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Moller IM, Mur LA (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63:5581–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193–202

    Article  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Ratcliffe RG, Gupta KJ (2014) Plant mitochondria: source and target for nitric oxide. Mitochondrion 19(B):329–333

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Hall KC (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121–130

    CAS  Google Scholar 

  • Jaeger C, Gessler A, Biller S, Rennenberg H, Kreuzwieser J (2009) Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging. J Exp Bot 60:4335–4345

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG, Jr., Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30: 393–402

    Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski TT, Pallardy SG (1984) Effect of flooding on water, carbohydrate, and mineral relations. In: Kozlowski TT (ed) Flooding and plant growth. Chapter 5. Academic, San Diego, pp 165–193

    Chapter  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G et al (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea US, Ten Hoopen F, Provan F, Kaiser WM, Meyer C, Lillo C (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta 219:59–65

    Article  CAS  PubMed  Google Scholar 

  • Licausi F (2013) Molecular elements of low-oxygen signaling in plants. Physiol Plant 148:1–8

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Pucciariello C, Perata P (2013) New role for an old rule: N-end rule-mediated degradation of ethylene responsive factor protein governs low oxygen response in plants. J Integr Plant Biol 55:31–39

    Article  CAS  PubMed  Google Scholar 

  • Limami AM, Glévarec G, Ricoult C, Cliquet J-B, Planchet E (2008) Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot 59:2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limami AM, Diab H, Lothier J (2014) Nitrogen metabolism in plants under low oxygen stress. Planta 239:531–541

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Rennenberg H, Kreuzwieser J (2015) Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. Planta 241:579–589

    Article  CAS  PubMed  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct Plant Biol 28:1121–1131

    Article  Google Scholar 

  • Manzur ME, Grimoldi AA, Insausti P, Striker GG (2009) Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann Bot 104:1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielke MS, de Almeida A-AF, Gomes FP, Aguilar MAG, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  • Millar AH, Day DA (1996) Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett 398:155–158

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Bergersen FJ, Day DA (1994) Oxygen affinity of terminal oxidases in soybean mitochondria. Plant Physiol Biochem 32:847–852

    CAS  Google Scholar 

  • Mollard FPO, Striker GG, Ploschuk EL, Insausti P (2010) Subtle topographical differences along a floodplain promote different plant strategies among Paspalum dilatatum subspecies and populations. Austral Ecol 35:189–196

    Article  Google Scholar 

  • Mugnai S, Azzarello E, Baluska F, Mancuso S (2012) Local root apex hypoxia induces NO-mediated hypoxic acclimation of the entire root. Plant Cell Physiol 53:912–920

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106:18843–18848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K et al (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487

    Article  CAS  PubMed  Google Scholar 

  • Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie X, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohwaki Y, Kawagishi-Kobayashi M, Wakasa K, Fujihara S, Yoneyama T (2005) Induction of class-1 non-symbiotic hemoglobin genes by nitrate, nitrite and nitric oxide in cultured rice cells. Plant Cell Physiol 46:324–331

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Freschi L, Sodek L (2013a) Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiol Biochem 66:141–149

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Salgado I, Sodek L (2013b) Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia. Planta 237:255–264

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  • Richter C (1997) Reactive oxygen and nitrogen species regulate mitochondrial Ca2+ homeostasis and respiration. Biosci Rep 17:53–66

    Article  CAS  PubMed  Google Scholar 

  • Ricoult C, Cliquet J-B, Limami AM (2005) Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol Plant 123:30–39

    Article  CAS  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Mustroph A (2011) Plant oxygen sensing is mediated by the N-end rule pathway: a milestone in plant anaerobiosis. Plant Cell 23:4173–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlüter U, Crawford RMM (2001) Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J Exp Bot 52:2213–2225

    Article  PubMed  Google Scholar 

  • Shah JK, Cochrane DW, De Paepe R, Igamberdiev AU (2013) Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways. Plant Physiol Biochem 63:185–190

    Article  CAS  PubMed  Google Scholar 

  • Stohr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  CAS  PubMed  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474

    Article  CAS  PubMed  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Ploschuk EL, Vasellati V (2005) Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil 276:301–311

    Article  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    Article  CAS  PubMed  Google Scholar 

  • van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367

    Article  PubMed  Google Scholar 

  • van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A et al (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Ann Bot 103:269–280

    Article  PubMed  Google Scholar 

  • Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu JCV, Yelenosky G (1991) Photosynthetic responses of citrus trees to soil flooding. Physiol Plant 81:7–14

    Article  CAS  Google Scholar 

  • Wample RL, Davis RW (1983) Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.) Plant Physiol 73:195–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  CAS  PubMed  Google Scholar 

  • Yordanova RY, Popova LP (2001) Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515–520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis M. Limami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Planchet, E., Lothier, J., Limami, A.M. (2017). Hypoxic Respiratory Metabolism in Plants: Reorchestration of Nitrogen and Carbon Metabolisms. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_10

Download citation

Publish with us

Policies and ethics