Advertisement

A Study of User Image Search Behavior Based on Log Analysis

  • Zhijing Wu
  • Xiaohui Xie
  • Yiqun LiuEmail author
  • Min Zhang
  • Shaoping Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10390)

Abstract

Study of user behavior in Web search helps understand users’ search intents and improve the ranking quality of search results. To better understand user’s Web image search behavior in practical environment, we investigate user behavior by analyzing a query log collected in one week from a popular image search engine in China. We focus on individual query analyses, temporal distribution, click-through behavior on the search engine result pages (SERPs), and behaviors on preview pages. Compared to general Web search, image search users usually submit shorter query strings and their selections of query terms are more diverse. We find that there exists a huge difference among users in image search click-through behavior. Users are more likely to do exploratory search compared to that in general Web search. This finding may provide us some insights about users’ behavior in the context of image search. Our findings may also benefit multiple perspectives of image search, such as UI design, effectiveness evaluation, ranking algorithms, and etc.

Keywords

Image search User behavior Log analysis Search intent 

References

  1. 1.
    Broder, A.: A taxonomy of web search. SIGIR FORUM. 36(2), 3–10 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Park, J.Y., O’Hare, N., Schifanella, R., Jaimes, A., Chung, C.: A large-scale study of user image search behavior on the web. In: Proceedings of CHI (2015)Google Scholar
  3. 3.
    Huijia, Y., Liu, Y., Zhang, M., Liyun, R., Ma, S.: Research in search engine user behavior based on log analysis (in chinese). J. Chin. Inf. Process. 21(1), 109–114 (2007)Google Scholar
  4. 4.
    André, P., Cutrell, E., Tan, D.S., Smith, G.: Designing novel image search interfaces by understanding unique characteristics and usage. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 340–353. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03658-3_40 CrossRefGoogle Scholar
  5. 5.
    Goodrum, A., Spink, A.: Visual information seeking: a study of image eries on the world wide web. In: Proceedings of the ASIS Annual Meeting, vol. 36, pp. 665–674. ERIC (1999)Google Scholar
  6. 6.
    O’Hare, N., de Juan, P., Schifanella, R., He, Y., Yin, D., Chang, Y.: Leveraging user interaction signals for web image search. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 559–568. ACM (2016)Google Scholar
  7. 7.
    Goodrum, A., Spink, A.: Image searching on the excite web search engine. Inf. Process. Manage. 37(2), 295–311 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Silverstein, C., Henzinger, M., Marais, H., et al.: Analysis of a very large web search engine query log [J]. SIGIR Forum 33(1), 6212 (1999)CrossRefGoogle Scholar
  9. 9.
    Kamvar, M., Baluja, S.: A Large Scale Study of Wireless Search Behavior: Google Mobile Search. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp. 701–709. ACM Press (2006)Google Scholar
  10. 10.
    H-T, Pu.: A comparative analysis of web image and textual queries. OIR 29(5), 457–467 (2005)Google Scholar
  11. 11.
    Song, Y., Ma, H., Wang, H., Wang, K.: Exploring and exploiting user search behavior on mobile and tablet devices to improve search relevance. In: Proceedings of 22nd International Conference on World Wide Web, pp. 1201–1212, Rio de Janeiro, ACM (2013)Google Scholar
  12. 12.
    Cen, R., Liu, Y., Zhang, M., Liyun, R., Ma, S.: Reliability analysis for the behavior of web retrieval users. J. Softw. 21(5), 1055–1066 (2010)CrossRefGoogle Scholar
  13. 13.
    Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval: a study of user queries on the web. SIGIR Forum 32(1), 5–17 (1998)CrossRefGoogle Scholar
  14. 14.
    Spink, A., Jansen, B., Wolfram, D., Saracevic, T.: From E-sex to E-commerce: web search changes. IEEE Comput. 35(3), 107–110 (2002)CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Chen, L., Jing, F., Deng, K., Ma, W.: Enjoyphoto : a vertical image search engine for enjoying high-quality photos. In: MM 2006, pp. 367–376 (2006)Google Scholar
  16. 16.
    Smith, G., Brien, C., Ashman, H.: Evaluating implicit judgments from image search clickthrough data. JASIST 63, 2451–2462 (2012)CrossRefGoogle Scholar
  17. 17.
    Xie, X., Liu, Y., Wang, X., Wang, M., Wu, Z., Wu, Y., Zhang, M., Ma, S.: Investigating examination behavior of image search users. In: The 39th ACM SIGIR International Conference on Research and Development in Information Retrieval (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhijing Wu
    • 1
  • Xiaohui Xie
    • 1
  • Yiqun Liu
    • 1
    Email author
  • Min Zhang
    • 1
  • Shaoping Ma
    • 1
  1. 1.State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations