Time in Physics pp 69-101 | Cite as
Causality–Complexity–Consistency: Can Space-Time Be Based on Logic and Computation?
- 2 Citations
- 6 Mentions
- 1k Downloads
Abstract
The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.
Notes
Acknowledgements
This text is based on a presentation at the “Workshop on Time in Physics,” organized by Sandra Ranković, Daniela Frauchiger, and Renato Renner at ETH Zurich in Summer 2015.
The authors thank Mateus Araújo, Veronika Baumann, Charles Bédard, Gilles Brassard, Harvey Brown, Caslav Brukner, Harry Buhrman, Matthias Christandl, Sandro Coretti, Fabio Costa, Bora Dakic, Frédéric Dupuis, Paul Erker, Adrien Feix, Jürg Fröhlich, Nicolas Gisin, Esther Hänggi, Arne Hansen, Marcus Huber, Lorenzo Maccone, Alberto Montina, Samuel Ranellucci, Paul Raymond-Robichaud, Louis Salvail, L. Benno Salwey, Andreas Winter, and Magdalena Zych for inspiring discussions, and the Einstein Kaffee as well as the Reitschule Bern for their inspiring atmosphere.—Grazie mille!
The authors thank Claude Crépeau for his kind invitation to present this work, among others, at the 2016 Bellairs Workshop, McGill Research Centre, Barbados.
Our work was supported by the Swiss National Science Foundation (SNF), the National Centre of Competence in Research “Quantum Science and Technology” (QSIT), the COST action on Fundamental Problems in Quantum Physics, and the Hasler Foundation.
References
- 1.S. Aaronson, http://www.scottaaronson.com/blog/?p=762,2012.
- 2.P.K. Aravind, Bell’s theorem without inequalities and only two distant observers. Found. Phys. Lett. 15(4), 397–405 (2002)CrossRefMathSciNetGoogle Scholar
- 3.J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, N. Gisin, Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)CrossRefGoogle Scholar
- 4.T.J. Barnea, J.-D. Bancal, Y.-C. Liang, N. Gisin, Tripartite quantum state violating the hidden influence constraints. Phys. Rev. A 88, 022123 (2013)ADSCrossRefGoogle Scholar
- 5.J. Barrett, L. Hardy, A. Kent, No-signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
- 6.Ä. Baumeler, S. Wolf, Perfect signaling among three parties violating predefined causal order, in Proceedings of IEEE International Symposium on Information Theory 2014 (IEEE, Piscataway, 2014), pp. 526–530Google Scholar
- 7.Ä. Baumeler, S. Wolf, The space of logically consistent classical processes without causal order. New J. Phys. 18, 013036 (2016)ADSCrossRefGoogle Scholar
- 8.Ä. Baumeler, S. Wolf, Non-causal computation avoiding the grandfather and information antinomies. arXiv preprint, arXiv:1601.06522 [quant-ph], 2016; accepted for publication in New J. Phys. (2016)Google Scholar
- 9.Ä. Baumeler, A. Feix, S. Wolf, Maximal incompatibility of locally classical behavior and global causal order in multi-party scenarios. Phys. Rev. A 90, 042106 (2014)ADSCrossRefGoogle Scholar
- 10.Ä. Baumeler, F. Costa, T.C. Ralph, S. Wolf, M. Zych, Reversible time travel with freedom of choice. Preprint (2017). arXiv:1703.00779 [quant-ph]Google Scholar
- 11.J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
- 12.C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
- 13.C.H. Bennett, The thermodynamics of computation. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRefGoogle Scholar
- 14.G. Brassard, A. Broadbent, A. Tapp, Quantum pseudo-telepathy. arXiv preprint, arXiv:quant-ph/0407221 (2004)Google Scholar
- 15.G. Chaitin, A theory of program size formally identical to information theory. J. ACM 22, 329–340 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.R. Cilibrasi, P. Vitányi, Clustering by compression. IEEE Trans. Inf. Theory 51(4), 523–1545 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.R. Colbeck, R. Renner, No extension of quantum theory can have improved predictive power. Nat. Commun. 2 411 (2011)ADSCrossRefGoogle Scholar
- 18.R. Colbeck, R. Renner, Free randomness can be amplified. Nat. Phys. 8, 450–454 (2012)CrossRefGoogle Scholar
- 19.S. Coretti, E. Hänggi, S. Wolf, Nonlocality is transitive. Phys. Rev. Lett. 107, 100402 (2011)ADSCrossRefGoogle Scholar
- 20.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, The work value of information. New J. Phys. 13, 053015 (2011)ADSCrossRefGoogle Scholar
- 21.H. Everett, “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)ADSCrossRefMathSciNetGoogle Scholar
- 22.A. Fine, Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)ADSCrossRefMathSciNetGoogle Scholar
- 23.E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.P. Gàcs, J.T. Tromp, P.M.B. Vitányi, Algorithmic statistics. IEEE Trans. Inf. Theory 47(6), 2443–2463 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 25.N. Gisin, Time really passes, science can’t deny that, arXiv preprint, arXiv:1602.0149 [quant-ph], 2016; in Proceedings of the Workshop on “Time in Physics,” ETH Zurich, 2015 (2016)Google Scholar
- 26.E. Hänggi, R. Renner, S. Wolf, Efficient information-theoretic secrecy from relativity theory, in Proceedings of EUROCRYPT 2010. Lecture Notes in Computer Science (Springer, Berlin, 2010)Google Scholar
- 27.G. Hermann, Die naturphilosophischen Grundlagen der Quantenmechanik. Abh. Fries’schen Schule, Band 6, 69–152 (1935)Google Scholar
- 28.S.C. Kleene, Introduction to Metamathematics (North-Holland, Amsterdam, 1952)zbMATHGoogle Scholar
- 29.A.N. Kolmogorov, Three approaches to the quantitative definition of information. Problemy Peredachi Informatsii 1(1), 3–11 (1965)zbMATHMathSciNetGoogle Scholar
- 30.R. Landauer, Information is inevitably physical. Feynman and Computation 2 (Perseus Books, Reading, 1998)Google Scholar
- 31.M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer, Berlin, 2008)CrossRefzbMATHGoogle Scholar
- 32.O. Oreshkov, C. Giarmatzi, Causal and causally separable processes. arXiv preprint, arXiv:1506.05449 [quant-ph] (2015)Google Scholar
- 33.O. Oreshkov, F. Costa, C. Brukner, Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)ADSCrossRefGoogle Scholar
- 34.S. Popescu, D. Rohrlich, Quantum non-locality as an axiom. Found. Phys. 24, 379–385 (1994)ADSCrossRefMathSciNetGoogle Scholar
- 35.R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 36.H. Reichenbach, The principle of the common cause, in The Direction of Time, Chap. 19 (California Press, Berkeley, 1956), pp. 157–167Google Scholar
- 37.B. Russell, On the notion of cause. Proc. Aristot. Soc. New Ser. 13, 1–26 (1912)Google Scholar
- 38.E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 14, 239–246 (1960)CrossRefMathSciNetGoogle Scholar
- 39.A. Stefanov, H. Zbinden, N. Gisin, A. Suarez, Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002)ADSCrossRefGoogle Scholar
- 40.T.E. Stuart, J.A. Slater, R. Colbeck, R. Renner, W. Tittel, An experimental test of all theories with predictive power beyond quantum theory. Phys. Rev. Lett. 109, 020402 (2012)ADSCrossRefGoogle Scholar
- 41.L. Szilárd, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen (On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings). Z. Phys. 53, 840–856 (1929)ADSCrossRefzbMATHGoogle Scholar
- 42.J.A. Wheeler, Information, physics, quantum: the search for link, in Proceedings III International Symposium on Foundations of Quantum Mechanics, pp. 354–368 (1989)Google Scholar
- 43.L. Wittgenstein, Logisch-philosophische Abhandlung. Annalen der Naturphilosophie, vol. 14 (Veit and Company, Leipzig, 1921)Google Scholar
- 44.S. Wolf, Non-locality without counterfactual reasoning. Phys. Rev. A 92(5), 052102 (2015)Google Scholar
- 45.J. Woodward, Making Things Happen: A Theory of Causal Explanation (Oxford University Press, Oxford, 2003)Google Scholar
- 46.C. Wood, R. Spekkens, The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)ADSCrossRefGoogle Scholar
- 47.J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
- 48.M. Zukowski, C. Brukner, Quantum non-locality - It ain’t necessarily so…. J. Phys. A Math. Theor. 47, 424009 (2014)Google Scholar
- 49.W.H. Zurek, Algorithmic randomness and physical entropy. Phys. Rev. A 40(8), 4731–4751 (1989)ADSCrossRefMathSciNetGoogle Scholar