Skip to main content

Relativistic Quantum Clocks

  • Chapter
  • First Online:
Time in Physics

Abstract

The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

The author “Ivette Fuentes” was previously known as Fuentes-Guridi and Fuentes-Schuller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ignoring this difficulty, and naively picking some time coordinate, one finds that the Schrödinger equation for a free particle does not possess the necessary symmetry; it is invariant under Galilean (rather than Lorentz) transformations.

  2. 2.

    Note that it is not acceleration but rather its time-derivative (the “jerk”) which produces the effect [64, 65].

References

  1. R. Giannitrapani, Positive-operator-valued time observable in quantum mechanics. Int. J. Theor. Phys. 36, 1575–1584 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer, Dordrecht, 2006)

    MATH  Google Scholar 

  3. L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945)

    Google Scholar 

  4. A. Peres, Measurement of time by quantum clocks. Am. J. Phys 48, 552 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. S.L. Braunstein, C.M. Caves, G. Milburn, Generalized uncertainty relations: theory, examples, and lorentz invariance. Ann. Phys. 247, 135–173 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. W. Rindler, Relativity: Special, General, and Cosmological (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  7. S. Hossenfelder, Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 90 (2013)

    Article  MATH  Google Scholar 

  8. H. Salecker, E. Wigner, Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. L. Burderi, T. Di Salvo, R. Iaria, Quantum clock: a critical discussion on spacetime. Phys. Rev. D 93, 064017 (2016)

    Article  ADS  Google Scholar 

  10. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, London, 1973)

    Google Scholar 

  11. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  12. W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  13. G.T. Moore, Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679–2691 (1970)

    Article  ADS  Google Scholar 

  14. K. Lorek, J. Louko, A. Dragan, Ideal clocks–a convenient fiction. Classical Quantum Gravity 32, 175003 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. C.-W. Chou, D. Hume, T. Rosenband, D. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  ADS  Google Scholar 

  16. T.L. Nicholson, A new record in atomic clock performance. Ph.D. Thesis, University of Colorado (2015)

    Google Scholar 

  17. N. Poli, C.W. Oates, P. Gill, G.M. Tino, Optical atomic clocks. Riv. Nuovo Cimento 36, 555–624 (2013)

    Google Scholar 

  18. L. von der Wense et al., Direct detection of the 229th nuclear clock transition. Nature 533, 47–51 (2016)

    Article  ADS  Google Scholar 

  19. C.J. Campbell et al., Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012)

    Article  ADS  Google Scholar 

  20. P. Komar et al., A quantum network of clocks. Nat. Phys. 10, 582–587 (2014)

    Article  Google Scholar 

  21. O. Hosten, N.J. Engelsen, R. Krishnakumar, M.A. Kasevich, Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529(7587), 505–508 (2016)

    Article  ADS  MATH  Google Scholar 

  22. M. Bondarescu, R. Bondarescu, P. Jetzer, A. Lundgren, The potential of continuous, local atomic clock measurements for earthquake prediction and volcanology, in EPJ Web of Conferences, vol. 95 (EDP Sciences, Les Ulis, 2015), 04009

    Google Scholar 

  23. D.E. Bruschi, A. Datta, R. Ursin, T.C. Ralph, I. Fuentes, Quantum estimation of the schwarzschild spacetime parameters of the earth. Phys. Rev. D 90, 124001 (2014)

    Article  ADS  Google Scholar 

  24. A. Dragan, I. Fuentes, J. Louko, Quantum accelerometer: distinguishing inertial bob from his accelerated twin rob by a local measurement. Phys. Rev. D 83, 085020 (2011)

    Article  ADS  Google Scholar 

  25. R. Howl, L. Hackermuller, D.E. Bruschi, I. Fuentes, Gravity in the quantum lab. arXiv preprint arXiv:1607.06666 (2016)

    Google Scholar 

  26. A. Derevianko, M. Pospelov, Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014)

    Article  Google Scholar 

  27. M.D. Gabriel, M.P. Haugan, Testing the Einstein equivalence principle: atomic clocks and local lorentz invariance. Phys. Rev. D 41, 2943 (1990)

    Article  ADS  Google Scholar 

  28. P.C. Davies, Quantum mechanics and the equivalence principle. Classical Quantum Gravity 21, 2761 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. S. Reynaud, C. Salomon,P. Wolf, Testing general relativity with atomic clocks. Space Sci. Rev. 148, 233–247 (2009)

    Article  ADS  Google Scholar 

  30. C. Wilson et al., Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)

    Article  ADS  Google Scholar 

  31. P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. 110, 4234–4238 (2013)

    Article  ADS  Google Scholar 

  32. J.L. Ball, I. Fuentes-Schuller, F.P. Schuller, Entanglement in an expanding spacetime. Phys. Lett. A 359, 550–554 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. I. Fuentes, R.B. Mann, E. Martín-Martínez, S. Moradi, Entanglement of dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)

    Article  ADS  Google Scholar 

  34. I. Fuentes-Schuller, R.B. Mann, Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. P.M. Alsing, I. Fuentes, Observer-dependent entanglement. Classical Quantum Gravity 29, 224001 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. N. Friis, D.E. Bruschi, J. Louko, I. Fuentes, Motion generates entanglement. Phys. Rev. D 85, 081701 (2012)

    Article  ADS  Google Scholar 

  37. D.E. Bruschi, I. Fuentes, J. Louko, Voyage to alpha centauri: entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)

    Article  ADS  Google Scholar 

  38. G. Adesso, I. Fuentes-Schuller, M. Ericsson, Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. N. Friis et al., Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

    Article  ADS  Google Scholar 

  40. N. Friis, M. Huber, I. Fuentes, D.E. Bruschi, Quantum gates and multipartite entanglement resonances realized by nonuniform cavity motion. Phys. Rev. D 86, 105003 (2012)

    Article  ADS  Google Scholar 

  41. D.E. Bruschi, A. Dragan, A.R. Lee, I. Fuentes, J. Louko, Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett. 111, 090504 (2013)

    Article  ADS  Google Scholar 

  42. M. Ahmadi, D.E. Bruschi, I. Fuentes, Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)

    Article  ADS  Google Scholar 

  43. M. Ahmadi, D.E. Bruschi, C. Sabín, G. Adesso, I. Fuentes, Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 4996 (2014)

    Article  ADS  Google Scholar 

  44. C. Sabín, D.E. Bruschi, M. Ahmadi, I. Fuentes, Phonon creation by gravitational waves. New J. Phys. 16, 085003 (2014). http://stacks.iop.org/1367-2630/16/i=8/a=085003

    Article  ADS  Google Scholar 

  45. J. Lindkvist et al., Twin paradox with macroscopic clocks in superconducting circuits. Phys. Rev. A 90, 052113 (2014)

    Article  ADS  Google Scholar 

  46. D.E. Bruschi, J. Louko, D. Faccio, I. Fuentes, Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities. New J. Phys. 15, 073052 (2013)

    Article  ADS  Google Scholar 

  47. T. Opatrny, Number-phase uncertainty relations. J. Phys. A Math. Gen. 28, 6961 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. N. Friis, A.R. Lee, J. Louko, Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D 88, 064028 (2013)

    Article  ADS  Google Scholar 

  49. S. Fagnocchi, S. Finazzi, S. Liberati, M. Kormos, A. Trombettoni, Relativistic Bose–Einstein condensates: a new system for analogue models of gravity. New J. Phys. 12, 095012 (2010)

    Article  ADS  Google Scholar 

  50. N.D. Birrell,P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1984)

    MATH  Google Scholar 

  51. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011). http://www.nature.com/nphoton/journal/v5/n4/full/nphoton.2011.35.html

    Article  ADS  Google Scholar 

  52. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  53. J. Aasi et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613–619 (2013)

    Article  ADS  Google Scholar 

  54. S.S. Szigeti, B. Tonekaboni, W.Y.S. Lau, S.N. Hood, S.A. Haine, Squeezed-light-enhanced atom interferometry below the standard quantum limit. Phys. Rev. A 90, 063630 (2014)

    Article  ADS  Google Scholar 

  55. B. Altschul et al., Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015)

    Article  ADS  Google Scholar 

  56. J. Lindkvist, C. Sabín, G. Johansson, I. Fuentes, Motion and gravity effects in the precision of quantum clocks. Sci. Rep. 5, 10070 (2015).

    Article  ADS  Google Scholar 

  57. M. Born, The theory of the rigid electron in the kinematics of the relativity principle. Ann. Phys. (Leipzig) 30, 1 (1909)

    Google Scholar 

  58. A. Monras, Optimal phase measurements with pure gaussian states. Phys. Rev. A 73, 033821 (2006)

    Article  ADS  Google Scholar 

  59. E.A. Desloge, Nonequivalence of a uniformly accelerating reference frame and a frame at rest in a uniform gravitational field. Am. J. Phys. 57, 1121–1125 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  60. F. Dahia, P.F. da Silva, Static observers in curved spaces and non-inertial frames in Minkowski spacetime. Gen. Relativ. Gravit. 43, 269–292 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. M. Lock, I. Fuentes, Dynamical Casimir effect in curved spacetime. New J. Phys. 19, 073005 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. L.E. Parker, The creation of particles in an expanding universe. Ph.D. Thesis, Harvard University (1966)

    Google Scholar 

  63. L. Parker, Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor. 45, 374023 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. S. Fulling, P. Davies, Radiation from a moving mirror in two dimensional space-time: conformal anomaly, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 348, 393–414 (The Royal Society, London, 1976)

    Google Scholar 

  65. L. Ford, A. Vilenkin, Quantum radiation by moving mirrors. Phys. Rev. D 25, 2569 (1982)

    Article  ADS  Google Scholar 

  66. C. Braggio et al., A novel experimental approach for the detection of the dynamical Casimir effect. Europhys. Lett. 70, 754 (2005)

    Article  ADS  Google Scholar 

  67. J.R. Johansson, G. Johansson, C. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  68. J. Barbour, The End of Time: The Next Revolution in Physics (Oxford University Press, Oxford, 2001)

    Google Scholar 

  69. A. Einstein, Zur elektrodynamik bewegter körper. Ann. Phys. 322, 891–921 (1905)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

MPEL acknowledges support from the EPSRC via the Controlled Quantum Dynamics CDT (EP/G037043/1), and IF acknowledges support from FQXi via the ‘Physics of the observer’ award ‘Quantum Observers in a Relativistic World’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian P. E. Lock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lock, M.P.E., Fuentes, I. (2017). Relativistic Quantum Clocks. In: Renner, R., Stupar, S. (eds) Time in Physics. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-68655-4_5

Download citation

Publish with us

Policies and ethics