Skip to main content

Re-evaluating Space-Time

  • Chapter
  • First Online:
Time in Physics
  • 1440 Accesses

Abstract

Special relativity inspired a fundamental shift in our picture of reality, from a spatial state evolving in time to a static block universe. We will highlight some conceptual issues raised by the block universe viewpoint, particularly concerning its complexity, causality, and connection to quantum theory. In light of these issues, and inspired by recent results showing that relativity can emerge naturally in discrete space-time dynamics, we will explore whether the evolving state picture might be more natural after all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this differs from Kolmogorov complexity [3], which only captures compressibility. The Kolmogorov complexity would generally be small for a block-universe as one could write a compact program to generate it by iterating the physical laws on the initial state.

  2. 2.

    The idea of retrocausality can be helpful in explaining quantum effects, particularly in cases involving post-selection, such as in the two-state vector formalism [16]. However, a standard causal explanation is also possible. There are also interesting recent results on quantum causal models [17].

  3. 3.

    A similar alternative is the ‘moving spotlight’ view of time. In this picture the entire block universe exists, but in addition a particular spatial slice representing an objective present is ’highlighted’, and this highlight evolves up the block universe. However, this view seems to suffer from almost all of the disadvantages of the block universe, as well as those of a preferred frame.

  4. 4.

    Or more generally that operators localised in a spatial region only evolve into operators on a slightly larger region.

References

  1. A. Einstein, Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891 (1905); English translation On the electrodynamics of moving bodies, G.B. Jeffery, W. Perrett (1923)

    Google Scholar 

  2. R. Arnowitt, S. Deser, C. Misner, Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322–1330 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. A. Kolmogorov, On tables of random numbers. Sankhyā Ser. A 25, 369–375 (1963). MR 178484

    Google Scholar 

  4. I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49, 6920 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.M. D’Ariano, A. Tosini, Emergence of space-time from topologically homogeneous causal networks. Stud. Hist. Phil. Sci. B: Stud. Hist. Phil. Mod. Phys. 44, 294-299 (2013)

    MATH  ADS  MathSciNet  Google Scholar 

  6. G.M. D’Ariano, P. Perinotti, Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 90, 062106 (2014)

    Article  ADS  Google Scholar 

  7. A. Bisio, G.M. D’Ariano, A. Tosini, Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.M. D’Ariano, N. Mosco, P. Perinotti, A. Tosini, Path-integral solution of the one-dimensional Dirac quantum cellular automaton (2014). arXiv:1406.1021

    Google Scholar 

  9. G.M. D’Ariano, N. Mosco, P. Perinotti, A. Tosini, Discrete Feynman propagator for the Weyl quantum walk in 2+1 dimensions (2014). arXiv:1410.6032

    Google Scholar 

  10. A. Bisio, G.M. D’Ariano, P. Perinotti, Lorentz symmetry for 3d quantum cellular automata (2015). arXiv:1503.01017

    Google Scholar 

  11. T.C. Farrelly, A.J. Short, Discrete spacetime and relativistic quantum particles. Phys. Rev. A 89, 062109 (2014)

    Article  ADS  Google Scholar 

  12. T.C. Farrelly, A.J. Short, Causal fermions in discrete space-time. Phys. Rev. A 89, 012302 (2014)

    Article  ADS  Google Scholar 

  13. G.F. FitzGerald, The ether and the earth’s atmosphere. Science 13(328), 390 (1889)

    Google Scholar 

  14. H.A. Lorentz, The relative motion of the earth and the aether. Zittingsverlag Akad. V. Wet. 1, 74–79 (1892)

    Google Scholar 

  15. H. Minkowski, Raum und Zeit (English translation: space and time). Jahresberichte der Deutschen Mathematiker-Vereinigung, 75–88 (1909)

    Google Scholar 

  16. Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, Time symmetry in the quantum process of measurement. Phys. Rev. B 134, 1410–1416, (1964)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J.-M.A. Allen, J. Barrett, D.C. Horsman, C.M. Lee, R.W. Spekkens, Quantum common causes and quantum causal models (2016). arXiv:1609.09487

    Google Scholar 

  18. G. Feinberg, Possibility of faster-than-light particles. Phys. Rev. 159, 1089–1105 (1967)

    Article  ADS  Google Scholar 

  19. K. Gödel, An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. D.Z. Albert, Time and Chance (Harvard University Press, Harvard, 2003)

    Google Scholar 

  21. M. Tooley, Time, Tense, and Causation (Clarendon Press, Oxford, 1997)

    Google Scholar 

  22. H. Everett, Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  23. G.C. Ghirardi, A. Rimini, T. Weber, A model for a unified quantum description of macroscopic and microscopic systems, in Quantum Probability and Applications, ed. by L. Accardi et al. (Springer, Berlin, 1985)

    Google Scholar 

  24. D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. I & II. Phys. Rev. 85, 166–193 (1952)

    MATH  ADS  MathSciNet  Google Scholar 

  25. R.B. Griffiths, Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. S. Watanabe, Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27(2), 179 (1955)

    Google Scholar 

  27. Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, Time symmetry in the quantum process of measurement. Phys. Rev. B 134(6), 1410–1416 (1964)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Y. Aharonov, S. Popescu, J. Tollaksen, Each instant of time a new Universe (2013). arXiv:1305.1615

    Google Scholar 

  29. A. Kent, Path integrals and reality (2013). arXiv:1305.6565

    Google Scholar 

  30. A. Kent, Solution to the Lorentzian quantum reality problem. Phys. Rev. A 90, 012107 (2014)

    Article  ADS  Google Scholar 

  31. B.S. DeWitt, Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    MATH  Google Scholar 

  32. V. Giovannetti, S. Lloyd, L. Maccone, Quantum time. Phys. Rev. D 92, 045033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

AJS acknowledges support from the FQXi ‘Physics of What Happens’ grant program, via the SVCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Short .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Short, A.J. (2017). Re-evaluating Space-Time. In: Renner, R., Stupar, S. (eds) Time in Physics. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-68655-4_4

Download citation

Publish with us

Policies and ethics