Advertisement

Time, (Inverse) Temperature and Cosmological Inflation as Entanglement

  • Vlatko VedralEmail author
Chapter
  • 1k Downloads
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

We present arguments to the effect that time and temperature can be viewed as a form of quantum entanglement. Furthermore, if temperature is thought of as arising from the quantum mechanical tunneling probability this then offers us a way of dynamically “converting” time into temperature based on the entanglement between the transmitted and reflected modes. We then show how similar entanglement-based logic can be applied to the dynamics of cosmological inflation and discuss the possibility of having observable effects of the early gravitational entanglement at the level of the universe.

PACS numbers

03.67.Mn 03.65.Ud 

Notes

Acknowledgements

The author acknowledges funding from the National Research Foundation (Singapore), the Ministry of Education (Singapore), the EPSRC (UK), the Templeton Foundation, the Leverhulme Trust, the Oxford Martin School, the Oxford Fell Fund and the European Union (the EU Collaborative Project TherMiQ, Grant Agreement 618074).

References

  1. 1.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 1 (2008)CrossRefGoogle Scholar
  2. 2.
    P.F. Gonzalez-Diaz, C.L. Sigüenza, J. Martin-Carion, Phys. Rev. D 86, 027501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D. Page, W. Wootters, Phys. Rev. D 27, 2885 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    T. Banks, Nucl. Phys. B 249, 332 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    R. Brout, Found. Phys. 17, 603 (1987); R. Brout, G. Horwitz, D. Weil, Phys. Lett. B 192, 318 (1987); R. Brout, Z. Phys. B 68, 339 (1987)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    J.S. Briggs, J.M. Rost, Found. Phys. 31, 693 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Mott, Proc. R. Soc. A 126, 79 (1929)ADSCrossRefGoogle Scholar
  8. 8.
    H. Everett, On the foundations of quantum mechanics. Ph.D. thesis, Princeton University, Department of Physics (1957)Google Scholar
  9. 9.
    Oscar C.O. Dahlsten, C. Lupo, S. Mancini, A. Serafini, Entanglement typicality. arXiv:1404.1444Google Scholar
  10. 10.
    M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    I. Prigogine, Int. J. Theor. Phys. 28, 927 (1989)CrossRefGoogle Scholar
  13. 13.
    A. Vilenkin, Phys. Lett. B 117, 25 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    E.P. Tryon, Nature 246, 396 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    D. Atkatz, Am. J. Phys. 62, 19 (1994)CrossRefGoogle Scholar
  16. 16.
    J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Valev, Estimation of the total mass and energy of the unverse. arXiv:1004.1035v1Google Scholar
  18. 18.
    S.K. Modak, D. Singleton, Int. J. Mod. Phys. D 21, 1242020 (2012); S.K. Modak, D. Singleton, Phys. Rev. D 86, 123515 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L.E. Parker, D.J. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    D. Baumann et al., (CMBPol Study Team), AIP Conf. Proc. 1141, 10 (2009)Google Scholar
  21. 21.
    S.K. Modak, D. Singleton, Phys. Rev. D 89, 068302 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    R.P. Woodward, Rep. Prog. Phys. 72, 126002 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    V. Vedral, M.B. Plenio, M. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)Google Scholar
  26. 26.
    M. Wiesniak, V. Vedral, C. Brukner, Phys. Rev. B 78, 064108 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    K.S. Thorne, Gravitational Waves (Cornell University Library, Ithaca, 1995)Google Scholar
  28. 28.
    L.M. Krauss, F. Wilczek, Phys. Rev. D 89, 047501 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Clarendon LaboratoryUniversity of OxfordOxfordUK
  2. 2.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  3. 3.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations