Time in Physics pp 27-42 | Cite as
Time, (Inverse) Temperature and Cosmological Inflation as Entanglement
- 1k Downloads
Abstract
We present arguments to the effect that time and temperature can be viewed as a form of quantum entanglement. Furthermore, if temperature is thought of as arising from the quantum mechanical tunneling probability this then offers us a way of dynamically “converting” time into temperature based on the entanglement between the transmitted and reflected modes. We then show how similar entanglement-based logic can be applied to the dynamics of cosmological inflation and discuss the possibility of having observable effects of the early gravitational entanglement at the level of the universe.
PACS numbers
03.67.Mn 03.65.UdNotes
Acknowledgements
The author acknowledges funding from the National Research Foundation (Singapore), the Ministry of Education (Singapore), the EPSRC (UK), the Templeton Foundation, the Leverhulme Trust, the Oxford Martin School, the Oxford Fell Fund and the European Union (the EU Collaborative Project TherMiQ, Grant Agreement 618074).
References
- 1.L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 1 (2008)CrossRefGoogle Scholar
- 2.P.F. Gonzalez-Diaz, C.L. Sigüenza, J. Martin-Carion, Phys. Rev. D 86, 027501 (2012)ADSCrossRefGoogle Scholar
- 3.D. Page, W. Wootters, Phys. Rev. D 27, 2885 (1983)ADSCrossRefGoogle Scholar
- 4.T. Banks, Nucl. Phys. B 249, 332 (1985)ADSCrossRefGoogle Scholar
- 5.R. Brout, Found. Phys. 17, 603 (1987); R. Brout, G. Horwitz, D. Weil, Phys. Lett. B 192, 318 (1987); R. Brout, Z. Phys. B 68, 339 (1987)ADSCrossRefMathSciNetGoogle Scholar
- 6.J.S. Briggs, J.M. Rost, Found. Phys. 31, 693 (2001)CrossRefMathSciNetGoogle Scholar
- 7.N. Mott, Proc. R. Soc. A 126, 79 (1929)ADSCrossRefGoogle Scholar
- 8.H. Everett, On the foundations of quantum mechanics. Ph.D. thesis, Princeton University, Department of Physics (1957)Google Scholar
- 9.Oscar C.O. Dahlsten, C. Lupo, S. Mancini, A. Serafini, Entanglement typicality. arXiv:1404.1444Google Scholar
- 10.M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)ADSCrossRefMathSciNetGoogle Scholar
- 11.S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)ADSCrossRefGoogle Scholar
- 12.I. Prigogine, Int. J. Theor. Phys. 28, 927 (1989)CrossRefGoogle Scholar
- 13.A. Vilenkin, Phys. Lett. B 117, 25 (1982)ADSCrossRefGoogle Scholar
- 14.E.P. Tryon, Nature 246, 396 (1973)ADSCrossRefGoogle Scholar
- 15.D. Atkatz, Am. J. Phys. 62, 19 (1994)CrossRefGoogle Scholar
- 16.J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)ADSCrossRefMathSciNetGoogle Scholar
- 17.D. Valev, Estimation of the total mass and energy of the unverse. arXiv:1004.1035v1Google Scholar
- 18.S.K. Modak, D. Singleton, Int. J. Mod. Phys. D 21, 1242020 (2012); S.K. Modak, D. Singleton, Phys. Rev. D 86, 123515 (2012)ADSCrossRefGoogle Scholar
- 19.L.E. Parker, D.J. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
- 20.D. Baumann et al., (CMBPol Study Team), AIP Conf. Proc. 1141, 10 (2009)Google Scholar
- 21.S.K. Modak, D. Singleton, Phys. Rev. D 89, 068302 (2014)ADSCrossRefGoogle Scholar
- 22.R.P. Woodward, Rep. Prog. Phys. 72, 126002 (2009)ADSCrossRefGoogle Scholar
- 23.V. Vedral, M.B. Plenio, M. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)ADSCrossRefMathSciNetGoogle Scholar
- 24.V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
- 25.P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)Google Scholar
- 26.M. Wiesniak, V. Vedral, C. Brukner, Phys. Rev. B 78, 064108 (2008)ADSCrossRefGoogle Scholar
- 27.K.S. Thorne, Gravitational Waves (Cornell University Library, Ithaca, 1995)Google Scholar
- 28.L.M. Krauss, F. Wilczek, Phys. Rev. D 89, 047501 (2014)ADSCrossRefGoogle Scholar